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ABSTRACT
Automated testing of mobile apps has received significant attention
in recent years from researchers and practitioners alike. In this
paper, we report on the largest empirical study to date, aimed at
understanding the test automation culture prevalent among mo-
bile app developers. We systematically examined more than 3.5
million repositories on GitHub and identified more than 12, 000
non-trivial and real-world Android apps. We then analyzed these
non-trivial apps to investigate (1) the prevalence of adoption of
test automation; (2) working habits of mobile app developers in
regards to automated testing; and (3) the correlation between the
adoption of test automation and the popularity of projects. Among
others, we found that (1) only 8% of the mobile app development
projects leverage automated testing practices; (2) developers tend
to follow the same test automation practices across projects; and (3)
popular projects, measured in terms of the number of contributors,
stars, and forks on GitHub, are more likely to adopt test automation
practices. To understand the rationale behind our observations, we
further conducted a survey with 148 professional and experienced
developers contributing to the subject apps. Our findings shed light
on the current practices and future research directions pertaining
to test automation for mobile app development.

CCS CONCEPTS
• Software and its engineering → Software testing and de-
bugging.
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1 INTRODUCTION
Testing is an indispensable phase of software development life
cycle. It is the primary way through which quality of software is

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ASE ’20, September 21–25, 2020, Virtual Event, Australia
© 2020 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-6768-4/20/09.
https://doi.org/10.1145/3324884.3416623

improved. In comparison with manual testing, automated testing is
reported to be more advantageous for a number of reasons, such
as reliability, repeatability, and execution speed, especially in the
context of continuous integration [16]. Since mobile apps are an
integral component of our daily life and used to perform tasks in
critical fields such as banking, health, and transportation, automated
testing of mobile apps has received significant attention in recent
years from researchers and practitioners alike.

For a number of research topics in the area of mobile software
engineering, such as automated program repair [5, 55], automated
test transfer [6, 40], mutation testing [15, 30, 41], regression test
management [9, 31, 32], and test repair [8, 39, 49], understanding
the extent mobile tests exist, the type and quality of these tests, and
whether the tests are adopted in a particular way is of great impor-
tance. For instance, automated program repair of mobile apps [5, 55]
is a plausible idea, only if apps come with a substantial number
of tests to ensure the repairs are not breaking their functionality.
Similarly, automated test transfer [6, 40] is going to yield good
results, only if there is a large number of apps with tests, such that
tests can be migrated from one app to another. In addition, mobile
developers care about why and how to adopt automated testing
practices and particularly, whether such adoption impacts the over-
all quality of their apps and ways in which their apps are perceived
by the developer community. Therefore, a holistic view regarding
practical adoption of test automation in mobile app development
can contribute to both academia and industry.

To understand the test automation culture prevalent among
mobile app developers, researchers have investigated the extent
to which test automation is adopted in practice [12, 13, 33, 37, 42].
However, those studies are limited in terms of both scale and quality
of the curated dataset. First, most prior works have only considered
hundreds of apps from a single source, i.e., F-Droid. The findings
and conclusions drawn from a relatively small set of sample apps
may not generalize to the overall app ecosystem.

Second, previous studies have failed to exclude dummy and
invalid tests; an important factor that might severely affect their
conclusion. That is, when developers create a new project with
Android Studio, the official IDE for Android app development, it
generates some example test cases which are irrelevant for the
created app. Including these default tests may influence the results
of research questions as to the adoption of test automation practices.

Finally, appropriate and representative subjects are of critical
importance for an empirical study. In the case of test automation
for Android apps, a practical inclusion criterion is to consider only
non-trivial apps, since it is not cost-effective to write tests for trivial
apps such as class assignments, tutorials, or simple apps with only
one component. Studying trivial apps cannot reveal useful insights
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into the adoption of test automation practices. Nevertheless, no
previous study has focused exclusively on non-trivial apps.

In this paper, we report on a large-scale empirical study on
open-source Android apps from GitHub from three complemen-
tary perspectives: apps, developers, and impacts. We systematically
examined more than 3.5 million non-forked repositories in Java
and Kotlin, and investigated more than 12, 000 real-world apps to
determine (1) the prevalence of test automation in mobile app de-
velopment projects; (2) working habits of mobile app developers
with respect to automated testing; and (3) the correlation between
the adoption of test automation and the popularity of projects in
terms of different metrics, such as contributors and stars on GitHub,
and ratings on Google Play Store.

Two important contributions of our work are the scale of study
and the way we have curated the dataset. First, we considered more
than 12, 000 apps across 16 app markets including Google Play
Store, F-Droid, and PlayDrone. We also developed novel heuristics
to exclude irrelevant and example tests in data collection and anal-
ysis. Lastly, the subject apps were selected according to a criteria
designated for identifying non-trivial apps (detailed in Section 4).
As presented in Section 5, these efforts led to findings that are quite
different from prior work.

Another contribution of our work is that we considered both
unit tests and UI tests. Given the interactive nature of mobile apps,
UI testing, which requires an emulator or a real device to run, is
the primary way to examine the functionality and usability of mo-
bile apps. Therefore, in addition to unit tests, we are interested in
whether and how automated UI tests are adopted by mobile devel-
opers. We discuss related research questions such as developers’
preference for unit and UI testing and their compliance with the
Testing Pyramid practice [27] in Section 5.

To gather a deeper understanding of the underlying reasons for
our observations from the source code, we further conducted a
survey with the contributors of the subject apps, and ended up with
148 responses mainly from professional and experienced develop-
ers. Interestingly, with respect to some of the research questions,
the results obtained from the analysis of project data and survey
responses are inconsistent, indicating a gap between what the de-
velopers believe they do versus what they actually do.

Overall, this paper makes the following contributions:

• We report on the first large-scale analysis focusing on non-trivial
apps in over 12, 000 open-source projects from 16 app markets
and spanning a period of 5 years, to investigate how test automa-
tion is practically adopted.

• We present the working habits of mobile app developers regard-
ing test automation, such as the tendency to write tests or lack
thereof and the compliance with the Testing Pyramid practice.

• We discuss how the presence of automated tests, and its extent,
impact the popularity of apps in terms of different metrics on
GitHub and Google Play Store.

• We present the findings of a survey involving 148 practitioners
who developed the subject apps to understand the rationale be-
hind our observations as well as the challenges in Android app
testing.

• We create a publicly available dataset for this study [14]. The
dataset was built by referring to multiple data sources including

public class ExampleInstrumentedTest {
@Test
public void useAppContext() {

Context appContext = InstrumentationRegistry
.getInstrumentation()
.getTargetContext();

assertEquals("com.example",
appContext.getPackageName());

}
}
public class ExampleUnitTest {

@Test
public void addition_isCorrect() {

assertEquals(4, 2 + 2);
}

}

Figure 1: Example Test Classes Generated by Android Studio

GitHub, Google Play Store, F-Droid, and AndroZoo. We believe
the dataset can be of great utility for researchers working in the
aforementioned research areas (e.g., automated program repair,
automated test transfer, mutation testing) that need access to
mobile apps with tests.
The remainder of this paper is organized as follows. Section 2

provides a background on mobile app test automation, followed
by a brief review of prior research efforts in Section 3. Section 4
presents our approach for data collection, subject selection, and
developer survey. Section 5 details our findings. Section 6 outlines
the implications of this study for researchers and practitioners. The
paper concludes with a discussion of threats to validity and future
work.

2 TEST AUTOMATION IN ANDROID
2.1 Unit and UI Tests
Given the interactive nature of mobile apps, there are roughly two
types of tests in Android: unit tests and UI tests.1 According to the
definition from Google [27], unit tests are small tests that “validate
the app’s behavior one class at a time”. In contrast, UI tests or end-
to-end tests are medium or large tests that “validate user journeys
spanning multiple modules of the app”. The key difference between
unit and UI tests, besides the scope of testing, is that unit tests
run on a local machine with JVM, while UI tests need an emulated
or real device to run, and almost always use the Android OS or
Android framework.

In Android Studio, the official IDE for Android app development,
unit and UI tests are clearly separated—they are placed in differ-
ent directories. The tests in the test folder are unit tests that run
locally on JVM. The tests in the androidTest folder are UI tests that
require an emulator or real device to run. These two directories
are automatically generated when developers create a new project
with Android Studio. In this study, we consider the tests under the
test folder as unit tests, and the tests under the androidTest folder
as UI tests.

A feature of Android Studio highly related to our study is that,
when developers create a new project, it generates not only the
folders, but also examples for different types of tests. By default, the

1Sometimes they are called local tests and instrumented tests [21].
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Figure 2: Illustration of the Testing Pyramid Practice
from [27]

test folder contains a class called ExampleUnitTest.java, and the an-
droidTest folder contains a class called ExampleInstrumentedTest.java,
as shown in Figure 1. They are executable examples of unit and UI
tests to help developers get started with test automation. However,
including these example files may result in overestimated conclu-
sions for research questions about the prevalence or adoption of
automated tests, because developers may accidentally commit these
files without an intention to write automated tests. In this study,
we exclude these example files when counting number of tests
contained in an app.

2.2 The Testing Pyramid Practice
The Testing Pyramid is a mindset or practice to guide developers
in terms of how much effort they should put on creating different
kinds of automated tests [1, 11, 18, 27, 47]. It essentially says that
developers have to balance their automated tests by having many
more low-level unit tests than high-level UI tests, as illustrated in
Figure 2.

There are many reasons to follow the Test Pyramid practice.
First, unit tests make debugging easier because they focus on small
modules that can be tested independently. When unit tests fail,
developers can quickly pinpoint the root cause of failure and save a
lot of time. On the other hand, if there is a failure reported by a UI
test, it usually means that the corresponding unit tests are incorrect
or missing. Furthermore, unit tests are more robust and run faster in
general, while UI tests may be subject to flakiness [45] and almost
always run slower. As a result, while UI tests are still important to
validate end-to-end workflows, overly relying on them will make
testing expensive, slow, and brittle.

Although the proportion of tests for each layer in the Testing
Pyramid varies based on different apps, a general recommendation
from Google is a 70/20/10 split: 70% unit tests, 20% integration
tests, and 10% UI tests [27]. Note that, while there is a layer of
integration tests, and they can be understood as tests that “validate
the collaboration and interaction of a group of units [27]”, the scope
for integration tests is controversial [35]. In fact, these three layers
are not totally clear-cut and sometimes overlap with each other [48].
In this paper, we leverage the characteristics of Android apps and
Android Studio to identify the two major types of tests, unit and UI
tests. Furthermore, according to the above guideline, an appropriate
ratio of UI tests could be 20% to 30% of the total number of tests.

3 RELATEDWORK
Empirical studies onmobile app testing. Previously, researchers
have investigated how test automation is practically adopted [12,
13, 33, 37, 42, 43, 50]. Kochhar et al. [37] analyzed over 600 Android
apps on F-Droid to check the presence of test cases and computed
the code coverage. They also conducted surveys to understand the
usage of automated testing tools and the challenges faced by devel-
opers while testing. Cruz et al. [13] analyzed 1,000 Android apps
on F-Droid to check their usage of automated testing frameworks
and continuous integration tools. They also found that projects
using automated testing have more contributors and commits on
GitHub. Recently, Fabiano et al. [50] analyzed 1,780 Android apps
on F-Droid to investigate the prominence of tests developed for the
apps, as well as other quality metrics of the tests such as test smells,
code coverage, and assertion density. Our work is different from
theirs in terms of the scale and data source, as we analyzed over
12,000 apps across 16 app markets.

In addition, Coppola et al. [12] analyzed more than 15,000 apps
on GitHub to examine the diffusion, evolution, and modification
causes of UI tests in open-source Android apps. While their work
is highly related to ours, the key difference is that we focus on only
non-trivial apps as they did not factor out toy apps and forks of
real apps from their dataset. For example, among the list of 1,042
repositories with tests released by the authors2, only 42 (4%) of
them are considered in our study. That means our study considers
a very different set of apps from theirs.

On the other hand, to know the main challenges that developers
face while building mobile apps, Joorabchi et al. [33] conducted
a qualitative study with 12 mobile developers from 9 companies,
followed by a survey with 188 respondents. Linares-Vásquez et
al. [42] also analyzed responses from 102 open-source Android app
developers to understand their practices and preferences regarding
Android app testing. Unlike our work, these papers did not analyze
open-source data in the wild and merely relied on interviews and
survey responses.

Finally, Linares-Vásquez et al. [43] reviewed the frameworks,
tools, and services for automated mobile testing, and their limita-
tions. From a survey, they identified several key challenges that
should be addressed in the near future by the researchers in the
area of mobile test automation. Nevertheless, their work did not
include any source code analysis or developer survey.

Another related topic is the empirical study on automated in-
put generation (AIG) tools [10, 56, 57]. The work by Choudhary et
al. [10] focused on the comparison of different AIG tools in terms
their usability, compatibility, code coverage and fault detection ca-
pability. Another empirical study by Wang et al [56] performed
a similar comparison of AIG tools but focused on industrial apps.
Zeng et al. [57] further investigate the limitations of Android Mon-
key, the most widely used AIG tool, in an industrial setting with a
popular and commercial messenger app. Our work does not con-
sider AIG tools, rather focuses on automated or scripted test cases
created by developers.

Empirical studies on open-source software testing.A num-
ber of studies investigate the test adequacy in general open-source

2We have contacted the authors to ask for the complete list of repositories under their
study but get no response.
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Figure 3: Flow of Data Collection and Analysis in This Study

software. Kochhar et al. [36] studied more than 20,000 projects on
GitHub regarding their adoption of testing, and the correlation of
test cases with various project development characteristics such
as project size and number of bugs. To answer questions related
to the usage, costs, and benefits of continuous integration, Hilton
et al. [29] analyzed more than 34,000 projects on GitHub. Fraser
and Arcuri [19] empirically evaluated the code coverage ability of
EvoSuite, a search-based testing tool, with public classes retrieved
from 100 Java projects from SourceForge. On the other hand, Beller
et al. [7] reported a field study with 416 software engineers in which
their development activity was monitored with an Eclipse plugin to
understand how and when developers conduct testing. Our work
complements these studies by providing insights in the context of
Android app development.

4 METHODOLOGY
Figure 3 depicts the flow of data collection and analysis in our study.
This study consisted of the following steps: (1) we first collected a
large list of GitHub repositories from the GHTorrent database [28];
(2) we set filtering criteria to identify the repositories representing
non-trivial Android apps; (3) we further analyzed the identified
repositories to collect their meta-data and information about auto-
mated tests and popularity; (4) we evaluated the collected dataset to
answer research questions about the test automation culture preva-
lent among mobile app developers; and finally (5) we conducted
a survey with the developers of the subject apps to get a deeper
understanding of the underlying reasons for our observations from
the dataset. We now describe each of these steps in further detail.

4.1 Study Subjects and Selection Criteria
The initial list of GitHub repositories for our study was obtained
from the GHTorrent database [28]; a research project that monitors
the GitHub public event time line and populates a relational data-
base with the collected information, i.e., meta-data. We downloaded
the latest dump of their database [20], and queried the repositories
written in Java or Kotlin that are neither forked nor deleted. The
query returned a list of more than 3.5 million repositories.

To identify the repositories of non-trivial and real-world Android
apps from the returned list, we set the following selection criteria:

(1) The repositorymust contain exactly oneAndroidManifest.xml.
The manifest file is a must-have for every Android app to provide
essential information about the app to the Android build tools [23].

The reason for exactly one manifest file is that the repository con-
taining multiple such files is likely a tutorial or class assignment
with multiple demo apps. We used GitHub API to walk through the
directory tree of the projects to search for the files.

(2) The repository must contain build.gradle with a specific
string “com.android.application” inside. Android Studio uses
Gradle as its build system, and a Gradle plugin with this specific
string means that this project has a task to build an Android app.We
used GitHub API to search the projects with the specified condition.
Most of the repositories were filtered out with these two criteria,
with about 537 thousand apps left.

(3) At least two components have to be declared in the manifest
file. We parsed the manifest file and looked for the declaration of
four Android component types (i.e., Activity, Service, Broadcast
Receiver, and Content Provider [24]) inside. We set a threshold of
2 components because we believe it is not cost-effective to write
tests for a simple app with only one component. About half of the
apps were removed by this step, with 287 thousand apps left.

(4) The package name stated in the manifest file must appear in
an app market. We believe that the apps published in app markets,
especially the markets that charge fees to join such as Google
Play Store, are more likely beyond toy or demo apps, because the
developers want the apps to reach general users (and even willing
to pay for it). From the manifest file of each app, we retrieved
the package name and tried to match it with apps hosted in the
following app markets: Google Play Store, F-Droid [17], and the list
of package names and markets provided by AndroZoo [3].3 This
criterion was critical to identify non-trivial apps and left us with a
list of about 19 thousand apps.

(5) We removed the apps with duplicate package names, and
ended up with a list of 14, 914 GitHub repositories of non-trivial
Android apps.4

The above filtering process took two months, primarily because
of the rate limit of GitHub API (5,000 requests per hour).

4.2 Data Collection and Analysis
For each of the selected repositories, we used GitHub API to further
collect its meta-data: creation date, number of forks, number of
stars, number of commits, number of contributors, number of issues,
and number of pull requests. If the app is on Google Play Store,
we also collected its category and user ratings by crawling the app
page.

To collect the information about how test automation is adopted
in the project, we used GitHub API to walk through the directory
tree of the project, and parsed all the files under the test and an-
droidTest folders, if any exist. We considered a method as a test
case if it is annotated with “@Test”. This annotation is used by
JUnit-based testing frameworks, including both unit and UI test-
ing frameworks such as JUnit [34], Robolectric [52], Mockito [46],
and Espresso [26]. A prior study investigating the usage of testing
frameworks in 1, 000 apps on F-Droid [13] shows that 100% of the
adopted unit testing frameworks and 97% of the UI testing frame-
works are JUnit-based. Furthermore, we classify a test case as a
3A list of app markets considered by AndroZoo can be found at [4].
4Sometimes two repositories contain the same package name because one is a direct
copy of the other (not by forking). In this situation, we keep the repository with the
oldest creation date.
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Table 1: Distribution of Apps by App Market*

Market* #Apps
Google Play 11265
PlayDrone 539
fdroid 434
anzhi 408
appchina 294
mi.com 70
VirusShare 62
angeeks 41
1mobile 26
freewarelovers 12
slideme 10
torrents 4
praguard 3
hiapk 2
proandroid 1
apk_bang 1
*An app may belong to multiple markets

Table 2: Distribution of Apps by Year Created

Year Created #Apps
2015 3614
2016 2330
2017 1731
2018 2898
2019 1989
Total 12562

unit test if it is under the test folder, and otherwise as a UI test (i.e.,
under the androidTest folder). Finally, as mentioned in Section 2.1,
we excluded the example unit and UI test generated by Android
Studio.

An assumption of our study is that the subject apps were devel-
oped with Android Studio. Because Android Studio has been the
official IDE for Android app development since its first stable release
in December 2014 [22], we further factored out the repositories
before 2015 from the list described in Section 4.1. We finally ended
up with 12, 562 repositories/apps in our dataset. The distribution
of apps by app market is shown in Table 1. While the majority of
the apps were published on Google Play Store, the dataset covers
apps across 16 app markets. Table 2 shows the distribution of apps
by the year they were created. For the apps on Google Play Store,
Figure 4 shows the distribution by category.

4.3 Survey
To complement our findings, we conducted an online survey with
the developers of the subject apps in our dataset. In this section,
we describe the design, participant selection, and data collection of
the survey.

4.3.1 Survey Design. The online survey was designed to under-
stand the rationale behind our findings from the dataset as well as
the challenges in Android app testing. We first asked demographic
questions to understand the respondents’ background, such as their

Figure 4: Distribution of the Google Play Apps by Category

experiences in terms of the number of years of Android app de-
velopment. We then asked them about their current practices of
Android app testing. For the respondents reporting the use of auto-
mated tests, we further asked them related questions such as the
preference for unit and UI testing and whether they follow the Test-
ing Pyramid practice, and the reasons for their choices. Next, we
presented some of our findings in the correlation analysis between
the adoption of test automation and the popularity of apps, and
asked for their opinions on possible explanations. Finally, we asked
the respondents for the difficulties in adopting automated tests and
general challenges of testing Android apps. For all questions about
practices and opinions, we provided a set of choices identified from
previous studies [13, 37, 42], as well as an “other” choice with free
form text if none of the provided choices apply. A sample of the
survey can be found at the companion website [14].

To ensure that the questions were clear and the survey can be
finished in 10 minutes, we conducted a pilot survey with graduate
students in Computer Science who have experience in Android
app development and survey design. We rephrased some questions
according to the feedback. The responses from the pilot survey
were used solely to improve the questions and were not included
in the final results.

4.3.2 Participant Selection. From each subject app in our dataset,
we tried to retrieve the email of its main contributor in the following
order: (1) the email found in the GitHub profile of the repository’s
owner; (2) the email of the contributor who made the most commits;
and (3) the email of the contributor who made the most recent
commit. After removing invalid and duplicate data, we identified
7, 490 unique email addresses for our survey.

4.3.3 Data Collection. We used Qualtrics [51] to distribute the
survey to the 7, 490 targeted email addresses, and 653 of them
bounced. From the 6, 837 emails successfully sent, we received
148 valid and complete responses with a 2.2% response rate. The
response rate is close to the results of previous studies such as 2.1%
(83/3905) reported in [37] and 1.0% (102/10000) reported in [42] on
very similar surveys with mass developers on GitHub.

The 148 received responses are from 45 countries. The top two
countries where the respondents reside are United States of America
(22.3%) and India (10.8%). 70.3% of the respondents are professional
software developers paid by a company, and 68.9% of them have
more than 2 years of experience in Android app development.
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Table 3: Distribution of Apps in Terms of Presence of Test
Cases

Group #Apps Percentage
Apps with any tests 1002 7.98%
Apps without tests 11560 92.02%
Apps with unit tests 766 6.10%
Apps with UI tests 502 4.00%
Apps with both unit and UI tests 266 2.22%

5 RESULTS
In this section, we present the results of our study from three
complementary perspectives: apps, developers, and impacts.

5.1 App Perspective
We started by analyzing our curated dataset to understand the state
of affairs with respect to test automation adoption in open-source
projects. Answers to these questions are important for emerging ar-
eas of research interest (e.g., automated program repair, automated
test transfer) that rely on the availability of large number of tests.
RQ1. How prevalent is test automation in open-source An-

droid apps, in terms of the presence of unit and UI
tests?

Table 3 shows the number of repositories grouped by the pres-
ence of different types of tests. The results indicate that only 7.98%
of the subject apps contain tests, and most of them are poorly tested
in an automated manner—even though they are non-trivial. This
percentage is much lower than previous findings: 20% reported in
[12], 14% reported in [37], and 40% reported in [13].

There are many possible reasons for the inconsistency between
our results and previous findings. First, our analysis excludes the
placeholder tests that are automatically generated by Android Stu-
dio, as mentioned in Section 2.1. This check was critical for our
results, since such tests are common in our dataset (7,017 of the
12,562 apps examined, 56%). We also manually checked the dataset
released by Coppola et al. [12], and found such examples in the
reported test cases. We are not able to verify the results reported
by Kochhar et al. [37] because they are not willing to release their
dataset. Regarding the results reported by Cruz et al. [13], since
they did not search for test cases (detailed in the next paragraph),
we are unable to compare their results with ours.

The way one computes the existence of tests can also influence
the results significantly. For example, in the study by Cruz et al. [13],
they inspect the build configurations and look for imports related
to testing frameworks to determine the presence of tests in a repos-
itory. Since having related imports in the build configurations does
not necessarily mean there are test cases in the project, their find-
ings about prevalence of test automation is prone to overestimation.

Our inclusion criterion for subjects are different from prior stud-
ies too. We excluded the trivial apps (i.e., simple/demo apps with
only one component), which is not the case with all prior studies.

Finally, the scale of study might also affect the results. In the
papers by Kochhar et al. [37] and Cruz et al. [13], only 627 and
1,000 apps from F-Droid were analyzed, respectively. In contrast,
our study considers more than 12,000 apps on GitHub across 16

Figure 5: Prevalence of Test Automation of the Google Play
Apps by Category

markets, which is substantially different from their works in terms
of scale and source of data.

Another finding from Table 3 is that UI testing is not adopted as
extensively as unit testing (i.e., 4% vs. 6.1%). We will further discuss
this in Section 5.2.✎
✍

☞
✌

Observation 1: Only 8% of the non-trivial and real-world apps
have automated tests. Automated UI testing is less adopted than
unit testing.

RQ2. Is the prevalence of test automation varied across dif-
ferent categories of apps?

To understand whether there are any patterns as to the adoption
of automated testing practices across different categories of apps, for
the Google Play apps with category information in our dataset, we
report their adoption of automated tests by category in Figure 5. As
depicted in Figure 5, while overall the prevalence of test automation
is 8%, the percentage is substantially higher for some categories of
apps such as finance (19%) and video players (15%). On the other
hand, some categories of apps such as shopping (3%) and dating
(0%) are poorly tested in an automatic manner. This variance could
be attributed to the quality requirements for different categories.
Note that the observed patterns may not generally apply to apps
on Google Play Store, since many commercial and closed-source
apps, such as popular shopping apps, are not included in our study.

The observed patterns have practical implications for both re-
searchers and practitioners. For instance, the fact that certain cate-
gories of apps contain more tests than others indicates that tech-
niques like automated test transfer [6, 40] may work much better
for apps of a certain category than others. The results also provide
invaluable hints as to what are the customary development prac-
tices for apps of a certain category. This might help developers set
up the right development practice for their open-source projects to
gain traction and amass contributors.✎
✍

☞
✌

Observation 2: Some categories of apps, such as finance and
video players, are more extensively leveraging test automation
techniques than others.
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Table 4: The Ways of Testing Android Apps by the Survey
Participants

Way #Respondents
Manually 130
With scripted/automated tests 85
With dedicated QA team or 3rd party testing services 43
With automatic input generation tools 12
Other 6
Not at all 3

Table 5: The Reasons for not Adopting Test Automation by
the Survey Participants

Difficulty #Respondents
Cost to create and maintain automated tests 77
Time constraints 74
Size or maturity of the app 66
Lack of exposure or knowledge of existing frameworks 52
Cumbersome to use 50
Lack of support from management or organization 30
Other 11

5.2 Developer Perspective
In this section, we present our findings regarding the associations
between developers and test automation, including the rationale
and preferences reported by the survey participants.
RQ3. Howprevalent is test automation andwhat are the rea-

sons for not adopting it (as reported by developers)?
What are the challenges in testing of Android apps in
general?

In our survey, we asked the developers how they test their An-
droid apps, and they were allowed to select all options that apply.
Table 4 shows the results. Interestingly, over 57% (85/148) of the
respondents state that they are using automated tests, yet we do not
observe this degree of test automation adoption from the subject
apps they develop. One possible explanation for this inconsistency
is that the proponents of test automation are more willing to take
our survey, while the developers not interested in test automation
have no incentive to provide feedback. Another reason could be
that the professional developers adopt automated tests at work, but
not for their pet projects on GitHub. Finally, it is also possible that
the developers only uploaded their source code on GitHub without
corresponding tests.

To understand why the observed adoption of test automation is
low, we asked the developers to specify the reasons for not adopting
test automation. From the results in Table 5, we can see the top
three reasons are: (1) cost to create and maintain automated tests,
e.g., caused by changing requirements or rapid development; (2)
time constraints, e.g., because of time-to-market or customer’s
schedule; and (3) size or maturity of the app, e.g., the app is not big
or complex enough to require automated tests. Note that the third
reason corresponds to our insight that it is not cost-effective to write
automated tests for trivial apps, and they should be excluded in
the empirical study, as we have done. Besides, the respondents also

Table 6: The Biggest Challengs in Testing Android Apps by
the Survey Participants

Challenge #Respondents
Fragmentation 104
Concurrency 66
Performance 51
Security 44
Energy 43
Functionality 43
Accessibility 35
Other 14

Table 7: The Most Important or Useful Criteria for Evaluat-
ing Android App Tests by the Survey Participants

Criterion #Respondents
Fault detection capability of tests 96
Feature or use case coverage of tests 83
Code coverage of tests 67
Code or test case reviews 59
Other 7

mentioned other interesting difficulties in adopting test automation
as follows:

“Legacy code not designed to be tested requires lots of refactoring
which makes it harder to justify the additional effort to write tests.”

“...hard to test unexpected GUI aspects or unexpected hardware
(manufactor firmware) issues or unexpected permission issues or un-
expected Android behavoir or unexpected 3rd party data formats.”

It is worth mentioning that we also asked two general questions
to understand (1) the biggest challenges in testing of Android apps;
and (2) the most useful criteria for evaluating tests for Android apps.
The results are reported in Tables 6 and 7. According to Table 6, the
top three challenges are: (1) fragmentation, e.g., multiple Android
OS or API versions, devices with different sizes or resolutions, etc.;
(2) concurrency, e.g., detecting data races, deadlock, or violation
of execution order of methods; and (3) performance, e.g., app’s re-
sponsiveness such as frames per second for gaming apps. Moreover,
from Table 7 we can see that the developers do not consider code
coverage as the most important criterion for evaluating tests, which
is in line with the prior study [42]. We believe the reported concerns
call for additional research and development in test automation
frameworks and tools. We take a closer look at the implications of
this result in Section 6.✛

✚

✘

✙
Observation 3: 57% of the survey participants reported the use
of test automation, which varies drastically from that observed in
the dataset. The top three difficulties in adopting test automation
are: cost to create and maintain tests, time constraints, and size
or maturity of the app.

RQ4. Do the same developers have the same testing habits
across apps?

In this section, we investigate whether developers are following
the same test automation habits across apps. To that end, we first
clustered all subject apps by their owner, i.e., the GitHub account,
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Table 8: Probability ofObservingConsistent Behavior on the
Apps by the Same Developers. Sa : Clusters of Apps by the
Same Developers. Sb : by Different Developers

Set Size #Clusters Probability p-value(#Clusters) Same Behavior
Sa 985 902 91.57% 4.06e−12
Sb 985 763 77.46%

and obtained a set of 985 clusters, Sa , in which each cluster contains
two or more apps by the same developer. Next, we defined and
computed the test adoption rate for each cluster C in Sa as follows:

rate(C) =
#Apps with test in C

#Apps in C

A cluster with a rate of 1 or 0means the developer has followed the
same behavior across apps. That is, the developer either wrote tests
for all of her apps or did not write tests at all. We further computed
the probability of observing the same behavior in Sa by dividing
the number of clusters showing the same behavior (i.e., achieve test
adoption rate of 1 or 0) by the size of Sa .

Moreover, to understand if the probability observed in Sa is
high, we created another set of clusters, Sb , as a control group.
The number of clusters and the size of each cluster in Sb is exactly
the same as Sa . However, the apps in Sb were randomly selected
from the apps not in Sa . We computed the test adoption rate for
each cluster in Sb using the same equation, and the probability of
observing the same behavior in Sb accordingly.

Finally, to determine if the observed difference between Sa and
Sb is statistically significant, we applied hypothesis testing on the
rate distribution of Sa and Sb using the non-parametric test Mann-
Whitney U [44] with a significance level of 0.05. We chose the Mann-
Whitney U test because Sa and Sb are not normally distributed and
did not pass the normality test of Shapiro-Wilk [54].

The results in Table 8 show that in Sa , the set of clusters in
which each cluster consists of the apps by the same developer, it
is more likely to observe a cluster manifesting the same behavior.
In other words, for a group of apps by the same developer, the
probability that either all or none of them have tests (91.57%) is
higher than a group of apps by different developers (77.46%). The
difference between Sa and Sb is statistically significant, because
the null hypothesis that Sa and Sb are from the same distribution
is rejected by the Mann-Whitney U test with a p-value of 4.06 ×
10−12. This finding vouches for the effect of software engineering
education regarding test automation: once learned, developers keep
their habits.☛
✡

✟
✠Observation 4: App developers tend to follow the same test

automation practices across projects.

RQ5. Do developers prefer unit or UI testing and why?
From Table 3 in Section 5.1, we see that the apps adopting unit

tests (6.1%) are more than UI tests (4%). To validate our observation
and understand the reasons behind this, for the developers reporting
the use of test automation, we further asked what type of testing
(unit testing or UI testing) they do mostly and why. Among the 83
respondents, the majority of them (55/83, 66%) prefer unit testing.

Table 9: The Reasons for the Preference of Unit Testing by
the Survey Participants

Reason #Respondents
Speed 39
Scope 30
Simpleness 28
Robustness 26
Other 6

Table 10: Distribution of the Number of Tests in the Apps
with Both Types of Tests. 1Q: 1st quartile. 2Q: 2nd quartile
(median). 3Q: 3rd quartile.

Distribution
Min Max Mean 1Q 2Q 3Q

#Unit Tests 1 685 34.75 3 11 27.25
#UI Tests 1 178 14.32 2 7 17

Ratio of UI Tests to All Tests 0.3% 97.1% 41.9% 17.5% 40.0% 64.4%

This is in line with our observation from the dataset. Furthermore,
27% (22/83) of the respondents have no preference and 7% (6/83)
of them prefer UI testing.

We also asked the proponents of unit testing for their rationale.
Table 9 shows that the top three reasons by the developers are: (1)
speed, e.g., unit tests run faster than UI or end-to-end tests; (2) scope,
e.g., unit tests focus on small or independent modules, thereby
simplify the debugging; and (3) simpleness, e.g., unit tests are easier
to learn and write. On the other hand, developers preferring UI
testing indicate that the interactivity is the top reason, because
UI or end-to-end tests can test the app in a more interactive and
straightforward way. In Section 6, we discuss how these insights
could be used for possible improvements of UI testing tools and
libraries.✎
✍

☞
✌

Observation 5: Majority of the developers prefer unit testing,
corroborated through both project dataset and survey results.
The top three reasons are speed, scope and simpleness.

RQ6. Is the practice of Test Pyramid followed by develop-
ers?

As mentioned in Section 2.2, the Testing Pyramid practice is
a guideline for developers to have a balanced portfolio of differ-
ent types of automated tests. To understand if the guideline is
appropriately followed by the developers, we analyzed the 266 apps
containing both unit tests and UI tests in our dataset by counting
the number different types of tests. Furthermore, we computed
the ratio of the number of UI tests to the total number of tests as
follows:

#U I tests

#Unit tests + #U I tests
× 100

Table 10 shows that the distribution of the numbers of unit and
UI tests in the apps are skewed, because the averages are much
larger than the medians (i.e., 34.75 vs. 11 for unit tests, and 14.32
vs. 7 for UI tests). That means some apps contain many more tests
than others. On the other hand, the third quartile shows that 75%
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of the apps have fewer than 27.25 unit tests and 17 UI tests. We
believe these are reasonable numbers for general apps.

Regarding the developers’ compliance with the Test Pyramid
practice, Table 10 shows that in more than half of the apps, the ratio
of UI tests is higher than 40%, which differs from the recommended
ratio of 20%-30% by Google [27]. In other words, the developers
put more effort than recommended in writing UI tests. A possible
explanation is that the interactive nature of mobile apps drives
the developers to write more UI tests. However, while UI tests are
essential to validate certain types of requirements such as business
logic and usability, overly relying on them may make testing and
debugging cumbersome, as mentioned in Section 2.2.

In our survey, we asked the participants whether they are follow-
ing the Testing Pyramid practice, and 52% (51/98) of them said no,
which is consistent with our observation from the dataset. A promi-
nent reason from the respondents reporting the non-compliance
is the lack of exposure or knowledge about the Testing Pyramid
practice (40/51, 78%). Other interesting reasons include “special
needs for my team or projects” and “the Testing Pyramid practice
is misleading/flawed”.✎
✍

☞
✌

Observation 6: Developers put more effort than recommended
in writing UI tests, as the average ratio of UI tests to all tests is
40%.

5.3 Impact Perspective
Mobile app developers often strive to have their apps become pop-
ular. As members of an open-source community, developers are
pleased to see their apps receive more attention from other develop-
ers in terms of stars, forks, contributors, etc. on GitHub. As product
owners, developers want their apps to satisfy the users and receive
good ratings and feedback on the market. While these popular-
ity metrics are not necessarily related to the development process
of apps, we would like to investigate whether they are impacted
by the adoption of test automation. Specifically, we consider the
following popularity metrics on GitHub: number of stars, forks,
contributors, commits, issues5, and pull requests. Moreover, we
consider user ratings on Google Play Store as the metric of user
satisfaction. These metrics were collected in the manner described
in Section 4.2. Table 11 presents the distribution of data in terms of
different metrics.
RQ7. How does test automation relate to project popular-

ity?

Wewould like to knowwhether apps with tests are different from
apps without tests in terms of the popularity metrics on GitHub.
First, to eliminate the effect caused be app size, we excluded the apps
that have fewer than 3 components (the 1st quartile) and more than
8 components (the 3rd quartile) in our dataset, ending up with a set
of 7, 664 apps under consideration. Next, we conducted statistical
analysis for each metric with the following steps:
(1)Wedivided the data into two disjoint sets,Rw andR′.Rw consists
of themetric values from the apps with tests.R′ consist of themetric
values form the apps without tests.

5Issues may be considered as an indicator of app quality. In fact, the topics posted with
issues can be very broad, such as feature request or usage discussion. Therefore, we
consider it as an indicator of popularity.

Table 11: Distribution of the Popularity and Satisfaction
Metrics of the Apps. 1Q: 1st quartile. 2Q: 2nd quartile (me-
dian). 3Q: 3rd quartile.

Distribution
Sample Size Min Max Mean 1Q 2Q 3Q

Stars 12533 0 7897 15.09 0 0 1
Forks 12533 0 2209 4.49 0 0 1
Contributors 12533 0 451 2.30 1 1 2
Commits 12527 1 13844 75.95 4 15 55
Issues 12527 0 2442 5.5 0 0 0
Pull Requests 12527 0 1679 3.80 0 0 0
Ratings 3937 1 5 4.23 3.91 4.38 4.78

(2)We applied the Z-score method [38] with a threshold of three
times of standard deviation to remove the outliers from both sets.
(3) Since the apps without tests are much more than the apps with
tests in our dataset, Rw and R′ are extremely unbalanced in terms of
their sizes. Given that unequal sample sizes may generally reduce
statistical power of equivalence tests [53], we created Ro with the
same size as Rw by randomly selecting the values in R′.
(4) We computed the mean and median of Rw and Ro and the
difference between the mean and median.
(5) To determine if the difference observed in Rw and Ro is sta-
tistically significant, as in Section 5.2, we performed hypothesis
testing on Rw and Ro using the Mann-Whitney U test with a sig-
nificance level of 0.05. The null hypothesis on Rw and Ro is that
they were selected from populations having the same distribution.
For example, in the case of stars, the null hypothesis is that “an app
with tests (from Rw ) has the same number of stars on GitHub as an
app without tests (from Ro )”. We chose the Mann-Whitney U test
because Rw and Ro are not normally distributed and did not pass
the normality test of Shapiro-Wilk.
(6) The above process is repeated for all the popularity metrics.

Table 12 shows the results of our statistical analysis. The sta-
tistical evidence shows that test automation is associated with all
popularity metrics. Namely, on average, open-source Android apps
with tests are expected to have more stars, forks, contributors, com-
mits, issues, and pull requests on GitHub. Our finding is not exactly
in line with the prior work by Cruz et al. [13], in which they only
found such correlation with contributors and commits but not other
metrics. We believe this inconsistency is caused by similar reasons
discussed in Section 5.1.

We presented this correlation to the survey participants and
asked for their opinions as to the possible explanations. 57% (84/148)
of the respondents believe that there is a cause-and-effect relation-
ship between test automation and popularity. The causation, how-
ever, could be direct, reverse, bidirectional, etc., as explained by
some of the respondents below:

“I would say they have a direct connection since the quality and
rigidness of the app’s code can definitely influence an app’s popularity.”
(direct)

“Projects can only grow to large numbers if they are stable. Auto-
mated testing can ensure this happens to some degree.” (direct)
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Table 12: Impact of Having Tests on the Popularity of Apps.
Rw : Apps with Tests. Ro : Apps Without Tests.

Stars* Forks*
Size Mean Median p-value Size Mean Median p-value

Rw 629 10.95 0 4.07e−11 630 3.74 0 3.59e−12
Ro 629 4.57 0 630 1.31 0
∆ 6.38 0 2.43 0

Contributors* Commits*
Size Mean Median p-value Size Mean Median p-value

Rw 630 2.76 2 1.75e−14 628 147.21 84.5 3.53e−67
Ro 630 1.63 1 628 39.93 14
∆ 1.13 1 107.28 70.5

Issues* Pull Requests*
Size Mean Median p-value Size Mean Median p-value

Rw 635 10.39 0 1.40e−27 633 8.76 0 1.95e−29
Ro 635 1.35 0 633 0.85 0
∆ 9.04 0 7.91 0

*The difference is statistically significant.

“First you build the app, then it gets popular, then you get re-
sources/motivation to increase it’s quality. That’s when you go to UI
tests.” (reverse)

“I think because the projects were big they were motivated to create
a comprehensive testing suite.” (reverse)

“Projects that become popular end up writing more tests because
they need to ensure the stability of the project. As the project becomes
more stable (due to more testing) it provides a positive feedback loop.
The project, in part, is more likely to be popular if it is perceived as
stable, and testing helps to increase that stability.” (bidirectional)

On the other hand, 34% (50/148) of the respondents consider this
correlation to be more of a connection than causation. For example,
the following responses claim common causes for them:

“Common cause: Experienced developer who cares about making
code evolvable.”

“Popular projects are usually bigger, with multiple developers and
with more management. Tests is just a part of that process.”✎
✍

☞
✌

Observation 7: Popular projects are more likely to adopt test
automation practices. 57% of the developers believe it implies
causality between them.

RQ8. How does test automation relate to user satisfaction?
Following the same steps, we conducted statistical analysis to

investigate whether test automation relates to user satisfaction in
terms of Google Play ratings. As shown in Table 13, we do not find
the association between them with statistical significance.

Surprisingly, when we presented this to the survey participants
and asked for their opinions, 52% (77/148) of the respondents be-
lieve that test automation and user ratings should be somehow
related. Namely, the developers do not believe our finding is correct.
Examples of their reasons are as follows:

“I think it would depend on the type of application. Games and
such are harder to test and the quality of test does not correlate with

Table 13: Impact of Having Tests on the User Satisfaction of
Apps. Rw : Apps with Tests. Ro : Apps Without Tests.

Size Mean Median p-value
Rw 211 4.14 4.25 0.0689
Ro 211 4.2 4.33
∆ -0.06 -0.08

how fun the game is. For a banking application tests are essential and
do effect the quality of the final product.”

“Play Store ratings are a noisy metric of app quality and overall
user experience, so the no apparent correlation doesn’t convince me
that app quality isn’t impacted at least somewhat by automated
testing”✎
✍

☞
✌

Observation 8: Users’ satisfaction with apps appears to be un-
related to the adoption of automated testing practices in their
development, while half of the developers think differently.

6 DISCUSSION
Automated testing is not widely adopted. Only 8% of the sub-
ject apps in our study have adopted automated testing. As men-
tioned earlier, this finding contradicts earlier studies that have re-
ported substantially higher adoption rate [12, 13, 37], but it is in line
with the general perception that it is challenging to find complex
and open-source apps with lots of tests for research purposes, as
noted by Adamsen et al. [2]. Nevertheless, our study addresses this
issue by providing a dataset of real-world and non-trivial apps with
automated tests, which can by of significant utility for emerging
areas of research interest, such as automated program repair [5, 55],
automated test transfer [6, 40], and mutation testing [15, 30, 41].
Moreover, researchers may hold out hope on specific categories
of apps when looking for automated tests for their experiments,
since our results indicate that the prevalence of test automation is
varied across different categories. Note that the focus of our study
is on automated or scripted tests. The subject apps may have gone
through proper manual testing by the developers, but that is outside
the scope of this study.

Automated testing can be useful and important.We found
a strong correlation between the adoption of automated testing
practices and the popularity of development projects. The majority
of the survey respondents (91%, 134/148) believe that the correla-
tion is either causation or a connection. On the other hand, while
users’ satisfaction appears unrelated to test automation, a consider-
able amount of survey participants think that automated testing
contributes to app quality in terms of stability and maintainability,
and has impacts on users’ satisfaction. As noted by previous stud-
ies [16, 37], automated testing is not universally applicable, but can
be useful and important, especially for apps that update regularly
and frequently.

Automated testingneedsmore attention, organizationally
and culturally. Despite the benefits of automated testing, our
study shows that it is not adequately adopted in practice. Many
reported difficulties in adopting test automation, however, can be
addressed from the perspective of organization and culture. For
instance, management or organization could provide more support
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in terms of budget or schedule to allow for the introduction and
maintenance of automated tests. In other words, adoption of test au-
tomation involves a culture change; organizations need to bewilling
to incur the additional cost and effort of setting up test automation
practices early on for the promise of producing higher-quality apps
at a faster pace later on.

Tools and libraries have room for improvement.One of the
difficulties reported by developers in adopting automated testing
practices is cumbersome tools, including steep learning curve, poor
documentation, usability, and compatibility issues. A possible im-
provement of such tools is a comprehensive information hub that
aggregates and summarizes scattered pieces of information from
tutorials, forums, blogs, case studies, etc., to make the learning and
use of such tools easier. Besides, in our study, UI testing is less
adopted than unit testing, and developers have concerns about the
speed, simpleness, and robustness of UI testing. As a result, current
UI testing tools could be improved by addressing these concerns.
For example, supporting “headless mode” such as done by Robolec-
tric [52] can let developers run UI tests without an emulator and
save a massive amount of execution time. In addition, interactive
tools such as Espresso Test Recorder [25] can help developers cre-
ate UI tests without writing test code. Finally, efforts to prevent or
resolve flakiness of UI tests may increase the robustness and attract
more users.

Awareness matters. Our study indicates a primary reason for
not following specific practices in automated testing is the lack
of exposure or knowledge about them. Moreover, we found that
once developers learn and begin to use test automation techniques,
they maintain that habit across other projects. Therefore, raising
the developers’ awareness of existing test automation frameworks,
tools, and practices may increase their adoption.

7 THREATS TO VALIDITY
External validity. The major external validity is the generaliza-
tion of our findings to all open-source Android apps. We mitigated
this threat by including more than 12, 000 apps that vary in terms
of size, created year, category, published market, and popularity
metrics on GitHub. However, findings in this study may not be
applicable to trivial apps or commercial apps developed privately.
Furthermore, the respondents of our survey may not be representa-
tive of the entire developer community of the subject apps, or the
global community of Android app developers. We tried to reduce
this threat by collecting the responses of 148 developers from 45
countries with various years of professional experience. The num-
ber of responses to our survey is also comparable to other similar
studies of mobile developers [33, 37, 42].

Internal validity.We proposed certain heuristics to automat-
ically identify non-trivial apps. While we may have missed some
complex and published apps, e.g., apps with single Activity and mul-
tiple fragments, we believe that the findings in this paper are still
useful for practitioners and researchers regarding test automation.
Moreover, we automatically determine the number of test cases con-
tained in a repository based on the assumption that the test cases
are written in JUnit-based testing frameworks. While JUnit-based
testing frameworks overwhelmingly dominate Android app testing
(e.g., 97% to 100% according to a prior study [13]), it is possible that
some test cases built on top of other types of frameworks are not

included in our study. To mitigate this threat, we manually verified
a small set of projects in our dataset and did not find any missed
test cases. As a result, we argue that such cases are rare and would
not significantly impact our conclusions.

8 CONCLUSION
This paper provides a holistic view regarding how and why test
automation is practically adopted in open-source Android apps.
With the analysis of more than 12, 000 non-trivial apps on GitHub
and a survey of 148 developers of these apps, we investigated (1) the
prevalence of test automation in mobile app development projects;
(2) working habits of mobile app developers; and (3) the correlation
between the adoption of test automation and the popularity of
projects. Among others, we found that: (1) only 8% of the non-
trivial apps contain automated tests; (2) developers tend to follow
the same test automation practices across apps; and (3) popular
projects are more likely to adopt test automation practices. We
believe the findings in this paper shed light on the current practices
and future research directions pertaining to test automation for
mobile app development. In our future work, we plan to incorporate
additional open-source projects, such as those hosted on Bitbucket,
and investigate new research questions, e.g., questions related to
the interplay between test automation techniques and continuous
integration practices.
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