
71

Route: Roads Not Taken in UI Testing

JUN-WEI LIN, MGM Resorts International, USA

NAVID SALEHNAMADI and SAM MALEK, University of California, Irvine, USA

Core features (functionalities) of an app can often be accessed and invoked in several ways, i.e., through

alternative sequences of user-interface (UI) interactions. Given the manual effort of writing tests, developers

often only consider the typical way of invoking features when creating the tests (i.e., the “sunny day scenario”).

However, the alternative ways of invoking a feature are as likely to be faulty. These faults would go undetected

without proper tests. To reduce the manual effort of creating UI tests and help developers more thoroughly

examine the features of apps, we present Route, an automated tool for feature-based UI test augmentation

for Android apps. Route first takes a UI test and the app under test as input. It then applies novel heuristics

to find additional high-quality UI tests, consisting of both inputs and assertions, that verify the same feature

as the original test in alternative ways. Application of Route on several dozen tests for popular apps on

Google Play shows that for 96% of the existing tests, Route was able to generate at least one alternative test.

Moreover, the fault detection effectiveness of augmented test suites in our experiments showed substantial

improvements of up to 39% over the original test suites.

CCS Concepts: • Software and its engineering→ Software testing and debugging;

Additional Key Words and Phrases: GUI test augmentation, test reuse, test amplification, mobile testing

ACM Reference format:

Jun-Wei Lin, Navid Salehnamadi, and Sam Malek. 2023. Route: Roads Not Taken in UI Testing. ACM Trans.

Softw. Eng. Methodol. 32, 3, Article 71 (April 2023), 25 pages.

https://doi.org/10.1145/3571851

1 INTRODUCTION

By and large, existing automated test generation techniques [5, 7, 8, 14, 15, 22, 32–34, 36, 38, 45, 48]
cannot generate high-quality tests, consisting of both inputs and proper assertions, as they lack
developers’ knowledge; instead, they generate inputs for exploring applications (apps) without
providing proper assertions to verify the resulting behavior. Due to this limitation, the state-of-
the-practice in mobile app testing is largely driven by feature-based user-interface (UI) tests
that are manually developed. In contrast to the majority of automated test generation techniques
that focus on improving the code coverage of an app under test (AUT), feature-based UI testing
aims to improve the coverage of the features (functionalities) of an AUT. A prior study has showed
that this type of testing is preferred by mobile app developers [31]. While it is straightforward to

This work was supported in part by award numbers 2211790, 1823262, and 2106306 from the National Science Foundation.

Authors’ addresses: J.-W. Lin, 3600 S Las Vegas Blvd, Las Vegas, NV, 89109, USA; email: jlin@mgmresorts.com;

N. Salehnamadi and S. Malek, 5019 Donald Bren Hall, Irvine, CA, 92697, USA; emails: {nsalehna, malek}@uci.edu.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be

honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.

1049-331X/2023/04-ART71 $15.00

https://doi.org/10.1145/3571851

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 3, Article 71. Pub. date: April 2023.

https://orcid.org/0000-0002-0305-2346
https://orcid.org/0000-0001-7009-2420
https://orcid.org/0000-0001-6152-7402
https://doi.org/10.1145/3571851
mailto:permissions@acm.org
https://doi.org/10.1145/3571851
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3571851&domain=pdf&date_stamp=2023-04-26

71:2 J.-W. Lin et al.

conduct feature-based UI testing manually, developers may choose to write scripted or automated
UI test cases to make such testing repeatable in the context of continuous integration [16].

Automated feature-based UI testing has several advantages: reliability, execution speed, and in
particular, the manifestation of developers’ knowledge regarding software functionality through
oracles, i.e., assertions in test scripts. However, a recent study about test automation in open-source
Android apps shows that within the real-world projects adopting automated UI testing, half of
them contain fewer than eight UI test cases [29].

find_element_by_id ("school/timetable").click ()
find_element_by_id ("more_options").click ()
find_element_by_id ("school/item_1").click ()
e = find_element_by_id ("school/title")
assertEquals(e.getText (), "Manage timetables "); // Oracle

Listing 1. Test script for timetable management in School Planner.

We believe that the two observations in prior work—(1) the developers preferring feature-based
test coverage but mostly relying on ad hoc manual testing [31] and (2) half of the open-source
projects containing fewer than eight UI test cases [29]—are due to the same fact: The development
of feature-based test scripts involves substantial manual effort. As a result, when creating the test
scripts, developers often only consider the typical way of invoking a feature (i.e., the “sunny day
scenario” or “happy path”), neglecting the alternative ways of invoking it. In fact, the functional-
ities examined by such manually developed tests are usually the core capabilities of an app that
can be accessed in multiple ways, i.e., through alternative sequences of UI interactions.

For illustration, Listing 1 shows a GUI test for a feature dealing with timetable management in
School Planner, a popular planner app for students [4]. The execution of this test case is depicted
in Figure 1(a). This test resembles the actions a user would take to manage timetables through
a dedicated pop-up menu. The assertion in the last line checks if the app responds correctly by
verifying the title of the page is “Manage timetables” (the last screen of Figure 1(a)). Nevertheless,
Figures 1(b) and 1(c) demonstrate that this feature can be performed in two alternative ways, i.e.,
via the timetable selection dialog or Settings. When the developer writes the test for this feature,
she may perceive the scenario of Figure 1(a) as the default or primary way of invoking this func-
tionality. Failure to create tests for the other two ways of invoking the feature, however, leaves
the potential faults that can only be revealed by those tests undetected. For instance, the first test
shown in Figure 1(a) cannot reveal latent faults in the event listener method of the “MANAGE”
button in Figure 1(b).

To reduce the manual effort of creating feature-based tests and help developers more thoroughly
verify the features of their apps, we present Route, short for ROads not taken in Ui TEsting, which is
an automated solution for feature-based UI test augmentation for Android apps. Route first takes
a feature-based UI test, including both its inputs and assertions, and the AUT as input. It then
applies novel heuristics to explore the AUT and generate additional UI tests that verify the same

feature as the original test. Route leverages virtualization techniques to increase the accuracy and
performance of app exploration. In other words, it saves and restores the snapshots of the memory
of the device in certain states. In fact, Figures 1(b) and 1(c) are the alternative scenarios discovered
by Route from the original test shown in Figure 1(a).

There are several differences between Route and the prior work in test augmentation [6, 11,
13, 18, 23, 27, 35, 41, 44, 46, 49, 50]. First, the proposed augmentation is feature-based. In other
words, we aim to generate tests that verify the same functionalities as the original tests. To achieve
this goal, we have developed several properties that the generated tests should hold and designed
Route based on these properties. Second, the assertions in the original tests are reused in the
generated tests, making the augmented test suites capable of detecting feature-related faults and

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 3, Article 71. Pub. date: April 2023.

Route: Roads Not Taken in UI Testing 71:3

Fig. 1. Different use-case scenarios for timetable management in the School Planner app.

providing the developers with actionable information to debug their programs. Finally, the test
generation algorithm prioritizes the candidate tests according to how likely they are to exercise a
feature in a different way than the existing tests.

We have applied Route on several dozens of feature-based UI tests for verification of popular
apps on Google Play. The experimental results show that for 96% of the existing tests, Route was
able to generate at least one alternative test. Moreover, the fault detection effectiveness of the
augmented test suites was improved by up to 39% over the original test suites.

Overall, this article makes the following contributions:

• We propose a feature-based UI test augmentation technique capable of creating high-quality
tests, consisting of both inputs and assertions, to verify features of an app in alternative ways.

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 3, Article 71. Pub. date: April 2023.

71:4 J.-W. Lin et al.

Fig. 2. Example of states and paths in the School Planner app shown in Figure 1.

• We present novel heuristics for the proposed test augmentation technique and implement
them as an automated tool, called Route, which is publicly available [3].
• We empirically evaluate Route on real-world tests and demonstrate its utility to generate

additional tests capable of detecting new faults.

The rest of this article is organized as follows: Section 2 elaborates on the concept of feature-
based test augmentation. Section 3 provides an overview of Route as well as the implementation
details of its components. Section 4 presents our test generation algorithm. Section 5 discusses the
evaluation results. The article concludes with an overview of the related research and future work.

2 BACKGROUND

An existing UI test can be augmented by modifying its execution path. In this article, we model
the dynamic behavior of the AUT as a graph G = (V ,E), where:

• V is a set of GUI states (screens). Each v ∈ V represents a unique runtime GUI state in the
AUT.
• E is a set of edges between the GUI states. Each e = (vi ,vj , (w,a)) ∈ E represents a transition

from vi to vj by firing a GUI event that performs an action a on a widget w .

Furthermore, the execution of a test can be perceived as a traversal through the graph. Specifically,
for a UI test t , we represent its execution path p = (vs ,vf ,Vp ,Ep ,Vo) as follows:

• Vp ⊆ V are GUI states visited by t with edges Ep ⊆ E.
• vs ∈ Vp denotes the start state, i.e., the state before t executes the first event.
• vf ∈ Vp denotes the end state, i.e., the state after t executes the last event. vs and vf are also

referred to as terminal states.
• Vo ⊆ Vp denotes the oracle states, i.e., the states on which t has assertions. We also store the

assertions associated with each vo ∈ Vo .

Finally, for a usage-based test to be augmented, we call its execution path base path and the visited
GUI states base states. For example, in Figure 2, the solid edges illustrate the base path of the test
executing the scenario of Figure 1(a). The base path can then be modified to generate new tests
from the original test.

When we construct a modified execution path p ′ from a base path p to generate a new test, we
would like p ′ to still test the same functionality as p, albeit using an alternative path. To that end,
we propose several properties that we would like the modified execution path p ′ to hold. First, the
start and end states of p ′ should be the same as the base path p, because the terminal states provide

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 3, Article 71. Pub. date: April 2023.

Route: Roads Not Taken in UI Testing 71:5

Fig. 3. Overview of Route.

important information about the boundary of the tested feature. Similarly, the oracle states Vo in
p, as well as the assertions examined at each state vo ∈ Vo , should also be included in p ′, because
they are critical for semantically verifying the functionality. Finally, p ′ should not be drastically
different from p. The reason is that overly modifying p may significantly change the behavior of
the AUT and invalidate the original assertions. As a result, we need to limit the changes from p
to p ′ to specific types of operations, such as replacing a sub-path in p with an alternative simple
path. The paths labeled “b” and “c” in Figure 2 (corresponding to the scenarios of Figures 1(b) and
1(c)) exemplify the modified execution paths satisfying the proposed properties. In the following
sections, we describe how we designed Route to integrate these properties into the generated
tests.

3 APPROACH

Figure 3 provides an overview of Route. It takes an original test and the AUT as input and gen-
erates new tests that examine the same feature as the original test in alternative ways. There are
three main components in Route: Base Path Construction, App Exploration, and Test Generation.
First, Base Path Construction component executes the original test and retrieves its execution
path as the base path. Next, based on the visited states in the base path, App Exploration com-
ponent systematically explores the AUT and outputs the state transition diagram that represents
the AUT’s runtime behavior. Finally, Test Generation component applies novel heuristics to iden-
tify and prioritize the executable tests that hold the desired properties discussed in Section 2. We
describe the implementation of each component in the following subsections.

3.1 Base Path Construction

Algorithm 1 describes how Base Path Construction component executes the original test t to obtain
its execution pathp as the base path. As defined in Section 2,p is a 5-tuple ofvs (start state),vf (end
state),Vp (base states), Ep (edges), andVo (oracle states). The algorithm first initializes E andVo as
an empty set and then launches the AUT. Next, it dumps the current screen of the AUT to obtain
the initial state before test execution as the start state and uses it to initialize base states and the
variable for previous state (lines 3–6). A dumped screen of an Android app is a widget hierarchy
tree in XML format, in which non-leaf nodes are layout widgets and leaf nodes are actionable or
visible widgets, such as buttons and text views. We uniquely identify a GUI state by computing a
hash value over the widget hierarchy tree.

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 3, Article 71. Pub. date: April 2023.

71:6 J.-W. Lin et al.

ALGORITHM 1: Base Path Construction

Input:

t : original test
Output:

p = (vs ,vf ,Vp ,Ep ,Vo): the base path of t

1: Ep = ∅; Vo = ∅ � initialize edges and oracle states
2: launchApp ()
3: screen = dumpCurScreen()
4: vs = дetHash(screen) � start state
5: Vp = {vs } � initialize base states
6: prevState = vs

7: takeSnapshot (vs)
8: for each event ∈ t do

9: if event is not an assertion then

10: execute (event)
11: screen = dumpCurScreen()
12: curState = дetHash(screen)
13: Vp = Vp ∪ curState
14: Ep = Ep ∪ (prevState, curState, event)
15: prevState = curState
16: takeSnapshot (curState)
17: else � event is an assertion
18: Vo = Vo ∪ prevState
19: end if

20: end for

21: vf = prevState � end state
22: p = (vs ,vf ,Vp ,Ep ,Vo)
23: return p

Route models GUI states by considering all the widgets and node attributes. In other words, we
do not abstract away node attributes or values of text boxes, and any change in tree structure or
node attribute value leads to a different state. This granularity is required, because sometimes the
difference between an oracle state and its previous state is subtle, such as a change of the checked

or text attribute of a node. To decrease the likelihood of dynamic content such as timestamps or
ads that introduces inaccuracy in Route, we leverage virtualization when we need to revisit base
states, i.e., the GUI states in the base path.

Before executing the test, a snapshot of the start state is taken (line 7). We leverage virtualization
to save the visited states and later restore and explore them in App Exploration (detailed in the
next subsection). In other words, the AUT is installed and executed on a virtual machine (VM)

such as Android Virtual Device [20] or VirtualBox VM [39], such that the runtime program state
of the AUT, including the underlying OS and emulated hardware, can be stored in a snapshot and
fully resumed later. This helps improve the accuracy and performance of GUI state exploration.
In prior work [5, 22, 33, 34, 45], a GUI state is resumed by restarting the AUT and replaying the
recorded event sequence. However, a shortcoming of this restart-and-replay approach is that the
background services and dynamic contents such as timestamps or ads may change after restarting
the AUT and the GUI state cannot be reached again. Virtualization addresses this issue. Moreover,

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 3, Article 71. Pub. date: April 2023.

Route: Roads Not Taken in UI Testing 71:7

the exploration of the AUT can be accelerated, because the snapshots can be restored and processed
in parallel with multiple VMs. The practice of using virtualization and snapshots is also adopted
by prior work in Android testing [15].

Algorithm 1 executes the original test t after the initialization steps (line 8). For each event ∈ t , if
the event is not an assertion, then it first executes the event and then obtains curState , the current
GUI state after execution (lines 9–12). We subsequently update the base path in terms of the base
states Vp and edges Ep and take a snapshot of this new state (lines 13–16). However, if the event

is an assertion,1 then it means some checks are performed on the previous state, and we hence
update the oracle states Vo with prevState (lines 17 and 18). Finally, after the execution of t , the
end state is updated and the base path p is returned as input to the next phase of App Exploration
(lines 21–23).

3.2 App Exploration

With the base path p from the original test, App Exploration component performs k-step lookahead

on each base node to obtain G, an explored state transition graph of the AUT, as described in
Algorithm 2. In particular, the algorithm explores if there are paths with length not greater than k
from a base statev to another base state. This base-path-directed exploration restricts the possible
paths that can be constructed from the graph later, such that the generated tests will not deviate
too much from the base path.

Algorithm 2 first initializes G, the graph to be returned, with the states and edges in the base
path (line 1). Next, for each base statev ∈ Vp , it performs initialization steps in lines 3–9. It creates a
first-in-first-outqueue to store the event sequences that need to be executed for exploration (line 3).
To initialize the queue, it retrieves all actionable widgets from v (line 4), creates an action event,
such as click, for each of them, and enqueues the generated event sequences in queue (lines 5–9).
For example, the solid nodes and edges in Figure 2 depict the initial G for the test in Listing 1.
Moreover, for v equal to state 2 of Figure 2, queue is initialized with three single events, which
when executed result in exploration of states 3, 5, and 8.

For each event sequence events ∈ queue , Algorithm 2 first restores the GUI statev and executes
the events sequentially (lines 11–16). The executed events, as well as the encountered GUI states,
are also recorded as subPath, a sub-path starting from v (lines 17–21). Next, if curState , then the
GUI state reached after the execution is a base state, and it updates G with the traversed subPath
(lines 24 and 25). Otherwise, if the length of events is smaller than the threshold k , then it means
we can continue exploring forward from v . To that end, we retrieve all actionable widgets for
curState and create newEvents , a new event sequence by appending an appropriate action event
such as click to each of the retrieved widgets (lines 26–29). newEvents is then enqueued in queue
for further exploration (line 30). For example, for k = 2 andv equal to state 2 in Figure 2, subpaths
(2 → 3) and (2 → 5 → 4) will be added to G, since states 3 and 4 belong to Vp . Note that some
paths (explored states in Figure 2) are not added to G, because they do not visit any base states
or they exceed the lookahead threshold, e.g., given k = 3, the path (1 → 8 → 9 → 11 → 4) is
not explored. After all event sequences in queue are consumed for all base states v , the algorithm
stops and returns G (line 35). We describe Test Generation in detail in the next section.

4 TEST GENERATION

Test Generation component takes the base path p and the state transition graph G as input and
generates T , a set of executable tests with size n, as described in Algorithm 3. To that end, in

1The assertions considered in this article are UI-based assertions, such as checking the existence of widget or text, or

verifying the attributes of a widget.

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 3, Article 71. Pub. date: April 2023.

71:8 J.-W. Lin et al.

ALGORITHM 2: App Exploration

Input:

p = (vs ,vf ,Vp ,Ep ,Vo): base path
k : lookahead threshold

Output:

G: state transition diagram of the AUT

1: G = {Vp ,Ep }
2: for each v ∈ Vp do

3: queue = ∅ � A first-in-first-out queue
4: widдetList = дetActionable (v)
5: for each widдet ∈ widдetList do

6: events = ∅
7: events = events ∪ (widдet ,дetAction(widдet))
8: queue .enqueue (events)
9: end for

10: while queue � ∅ do

11: restoreSnapshot (v)
12: events = queue .dequeue ()
13: subPath = ∅
14: prevState = v ; curState = v
15: for each e ∈ events do

16: execute (e)
17: screen = dumpCurScreen()
18: curState = дetHash(screen)
19: if curState � prevState then

20: subPath =
subPath ∪ (prevState, curState, e)

21: prevState = curState
22: end if

23: end for

24: if curState ∈ Vp then

25: G .update (subPath)
26: else if events .lenдth < k then

27: widдetList = дetActionable (curState)
28: for each widдet ∈ widдetList do

29: newEvents =
events ∪ (widдet ,дetAction(widдet))

30: queue .enqueue (newEvents)
31: end for

32: end if

33: end while

34: end for

35: return G

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 3, Article 71. Pub. date: April 2023.

Route: Roads Not Taken in UI Testing 71:9

ALGORITHM 3: Test Generation

Input:

p = (vs ,vf ,Vp ,Ep ,Vo): base path
G: state transition diagram of the AUT
n: number of tests to be generated

Output:

T : a set of executable tests with size n

1: T = ∅
2: paths = дetSimplePaths (G,vs ,vf ,Vo)
3: T = дenerateTestsFromPaths (T ,paths,Vo)
4: if |T | < n then

5: paths = дetCyclicPaths (G,vs ,vf ,Vo)
6: T = дenerateTestsFromPaths (T ,paths,Vo)
7: end if

8: return T

9: function generateTestsFromPaths(T ,paths,Vo)
10: paths = sort (paths) � Sort paths by their “distance” to base path p (Algorithm 4)
11: for each p ′ ∈ paths do

12: launchApp ()
13: executable = execute (p ′,Vo)
14: if executable is true then

15: T = T ∪ p ′
16: if |T | = n then

17: return T
18: end if

19: end if

20: end for

21: return T
22: end function

line 2, it retrieves all simple paths in G that (1) are from start state (vs) to end state (vf) and
(2) visit all oracle states (Vo). We focus on the paths that satisfy these two constraints, because they
are required properties for the generated tests (as discussed in Section 2). Moreover, tests with an
execution path containing a cycle may include repetitive operations such as navigating back to a
previous screen, and hence considered less useful. As a result, the algorithm first considers simple
paths (i.e., paths without repeating states) when generating the tests.

Next, Algorithm 3 verifies the retrieved simple paths and generates executable tests from them
(line 3) by calling generateTestsFromPaths function (line 9). This function first sorts the paths
by their difference from the base path (line 10, detailed in the next subsection) and then launches
the AUT and executes each of the prioritized paths to verify if it is executable (lines 11–13). If a
candidate pathp ′ is executable, then it is added toT (lines 14 and 15). Note that when verifyingp ′, if
an oracle statevo ∈ Vo is encountered, then the associated assertions are also performed. That way,
the generated tests include the original assertions that have passed. generateTestsFromPaths
function returns when the size of T is n (line 16) or all candidate paths are verified (line 21).

If the size of T is smaller than n after checking all the simple paths, then Algorithm 3 will
further retrieve the execution paths containing only one cycle (lines 4 and 5). Specifically,

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 3, Article 71. Pub. date: April 2023.

71:10 J.-W. Lin et al.

Fig. 4. Examples of valid and invalid paths considered by getCyclicPaths() in Algorithm 3.

ALGORITHM 4: Path Difference

1: function pathDiff(p,p ′)
2: L = дetStateList (p) � L = {v1,v2, . . . ,v |L | }
3: L′ = дetStateList (p ′) � L′ = {v ′1,v ′2, . . . ,v ′|L′ | }
4: d1 = editDist (L,L′)
5: score = 0; count = 0
6: for i from 2 to |L′ | do

7: if v ′i � L then

8: score = score + xmlEditDist (v ′i ,v
′
i−1)

9: count = count + 1
10: end if

11: end for

12: d2 = score/count
13: return α × d1 + (1 − α) × d2

14: end function

getCyclicPaths function in line 5 only considers the paths with a non-loop circuit (i.e., a cycle
with a length larger than one) on a base state, as illustrated in Figure 4. We only allow this
special case for execution paths containing cycles, because we would like to modify the base
path conservatively. The retrieved paths are then verified in the same way to generate more tests
(line 6). The algorithm returns when the required number of tests are generated or after checking
all valid candidate paths (line 8).

4.1 Computing Path Difference

With the explored state transition graph of the AUT, the number of candidate paths may grow
exponentially and become too many to verify. As a result, Test Generation component prioritizes
the candidate execution paths by their difference from the base path (line 10 in Algorithm 3). In
other words, we compute a distance score between the base pathp and each candidate path p ′ with
the pathDiff function in Algorithm 4. The paths with the highest distance scores are executed
and verified first.

We would like to select the candidate paths that are most different from the base path, as they are
more likely to exercise a feature in a different way than the existing test. To that end, we consider
the difference between a candidate path and the base path at both the path level and the state level.
By path level, we mean how different the two paths are in terms of their length and visited states.
At the state level, we further look into the new states in the candidate path and determine the
extent they are different from their preceding states.

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 3, Article 71. Pub. date: April 2023.

Route: Roads Not Taken in UI Testing 71:11

Algorithm 4 first gets the list of states visited by p and p ′ as L and L′, respectively (lines 2 and 3).
It then computes a coarse-grained score (d1) about how different L and L′ are in terms of their edit
distance (line 4). Here, we treat L and L′ as two strings and the contained state identifiers (hash
values) as characters and compute their Levenshtein distance [28], i.e., the number of required
edits, inserts, or deletions that converts L to L′. Next, it traverses each state v ′i ∈ L′ sequentially. If
v ′i is not a base state (i.e.,v ′i � L), then we compute a fine-grained score to determine how different
v ′i andv ′i−1 (its previous state) are in terms of the edit distance between their XML representations,
i.e., XML tree edit distance (line 8). This helps us estimate if the change fromv ′i−1 tov ′i is significant
or merely incidental (such as a checkbox is selected). Finally,d1 and the averaged fine-grained score
(d2) are normalized into [0, 1] and a weighted sum of them is returned (line 13, with α = 0.5 in our
implementation).

5 EVALUATION

We investigated the following research questions in our experimental evaluation of Route:

RQ1. What is the quality of tests generated by Route? Are they for the same feature and useful?
RQ2. What are the main reasons for Route failing to generate useful feature-based tests?
RQ3. Is the fault detection effectiveness of the augmented test suites improved? What types of

faults can Route identify?
RQ4. How does the size of the augmented test suites affect their fault detection effectiveness?

5.1 Experimental Setup

Subject tests. We collected a set of feature-based UI tests from prior work in mobile app testing [12,
42, 43]. We avoided including multiple apps from the same category (e.g., two or more shopping
list apps) to ensure our dataset is diverse.2 In the dataset from Reference [43], most of the subject
apps came with only two or three tests. We hence expanded the original test suites to have at least
six test cases for each app. Moreover, we added appropriate assertions to the tests from Reference
[42] that had no assertion. The tests with oracles unsupported by our current implementation of
Route, such as assertions for Intent (the message object used in Android), were also excluded.
Finally, we examined the subject tests to ensure each of them is written for exactly one feature.
Table 1 shows the 73 subject tests in our study, including the test names, app names, and the
contained GUI events and assertions. With the exception of Writeily Pro and Money Tracker, all
of the other subject apps are popular (i.e., 100K+ to 50M+ installs on Google Play).

Implementation. We implemented Route in Python for UI tests written using Appium [2],
an open-source and cross-platform testing framework. Existing usage-based tests for the subject
apps are written with Appiums’ Python client. The generated tests are stored in JSON format and
executed by our test runner. When collecting actionable widgets from current screen (line 4 and
line 27 in Algorithm 2), we considered all leaf nodes in the XML representation if the clickable

attribute is true. Moreover, the current implementation only supports action click in the App Ex-
ploration component, i.e., line 7 and line 29 in Algorithm 2. We do not support system events such
as pressing back or home button. Furthermore, Route does not generate text input other than the
values used in the original tests.

In terms of the lookahead step in the App Exploration component, i.e., k in Algorithm 2, we
conducted a pilot study to check the quality of the generated tests with different k and determined
k = 3 to achieve a good balance between the execution time (the larger the value of k , the larger
the search space) and the ability to find tests that cover the same feature as in the original test but
in a different way. Regarding the number of generated tests in the Test Generation component, i.e.,

2The package, version, and category of subject apps can be found on the project website [3].

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 3, Article 71. Pub. date: April 2023.

71:12 J.-W. Lin et al.

Table 1. Subject Tests and Experimental Results

%Mutant Killed %Mutant Killed
App Test #Evt #Asst

Orig Aug’d
App Test #Evt #Asst

Orig Aug’d

TestAddFavorite 5 1 2 2 TestAddGrade 8 1 8 14
TestAppManager 2 1 5 16 TestAddSubject 8 1 0 14
TestCreateFolder 5 1 2 2 TestAgenda 3 1 0 6
TestListView 3 1 7 11 TestCalendar 2 1 0 6
TestOpenDirectory 3 1 2 2 TestManageTimeTable 5 1 6 11

Astro

TestSearch 6 1 9 9 TestSettings 3 1 0 6
TestAddBill 7 1 0 19 TestViewProgression 3 1 0 8
TestAddCategory 8 1 12 16

School Planner

TestViewTimeTable 4 1 6 8
TestDeleteBill 6 1 0 6 TestAddNewItem 4 1 0 0
TestEditBill 9 1 0 3 TestAddNewList 5 1 0 10
TestEditCategory 7 1 12 16 TestCheckAll 3 1 0 13
TestMarkPaid 6 1 6 9 TestDeleteChecked 6 1 3 15

Easy Bills Reminder

TestSearch 3 1 0 9 TestDeleteList 3 1 3 13
TestAddCostLog 7 1 7 15 TestRenameList 5 1 3 10
TestAddFuelLog 8 1 10 37

Shopping List

TestSearch 4 1 0 13
TestAddReminder 7 1 7 28 TestChangeCategory 8 2 16 16
TestCalcTripCost 9 1 0 0 TestCheckEmptyList 3 1 11 11
TestGasStations 5 2 7 7 TestCreateList 5 1 3 32
TestViewTripLog 3 1 0 22 TestCreateTask 4 1 16 18

Fuelio

TestViewVehicle 3 1 5 5 TestDeleteTask 6 2 16 16
TestAccount 4 1 3 3 TestFinishTask 5 2 16 16
TestAddExpense 7 2 12 12

To Do List

TestSearch 3 1 0 3
TestAddIncome 7 2 12 12 TestAddDraft 10 1 7 25
TestDeleteAllData 3 1 12 12 TestBlogPost 9 1 4 21
TestEditExpense 5 1 12 12 TestMenuBlog 2 1 4 21
TestEditIncome 5 1 12 12 TestMenuMedia 2 1 0 18
TestExchangeRate 9 1 9 9 TestMenuPage 2 1 0 18

Money Tracker

TestImport 6 1 6 24 TestPageSearch 4 1 0 25
TestCreateLink 10 3 11 13 TestPostNavigation 9 4 4 21
TestDelete 6 2 3 13

WordPress

TestViewSite 2 1 0 21
TestFileDetail 9 2 3 8 TestCreateFolder 5 1 0 17
TestRename 7 1 8 18 TestCreateNote 6 1 0 39
TestSearch 3 1 0 11 TestDeleteNote 4 1 0 3
TestSearchDetail 4 1 0 5 TestEditNote 4 1 0 25
TestUpload 5 1 0 0 TestMoveNote 6 1 3 17

TestRenameNote 5 1 3 6

OwnCloud

TestViewStorage 2 1 0 11

Writeily Pro

TestSearch 3 1 3 28

Total 377 86 17 38

#Evt: number of events. #Asst: number of assertions. %Mutant Killed: percentage of killed mutants. Orig: original test

suite. Aug’d: augmented test suite.

n in Algorithm 3, we configured n = 3, because in our experiments, we found that a value higher
than 3 results in diminishing returns in terms of the fault detection effectiveness of generated tests
and a value substantially lower than 3 sacrifices the ability to detect many defects. We evaluate
and discuss how variable n influences the fault detection effectiveness of the augmented test suites
as part of RQ4 in Section 5.5.

Finally, in our experiments, we used VirtualBox VM [39] with Android-x86 7.1 OS [1] installed.
The experiments were conducted on a Windows laptop with 2.8 GHz Intel Core i7 CPU and 32 GB
RAM. Our experimental data is publicly available [3].

5.2 RQ1: Quality of the Generated Tests

We executed Route to generate 219 new tests (with n = 3) from the 73 original tests in Table 1.
During the execution, App Exploration was the most time-consuming phase. On average, it took
five hours to finish the exploration for an original test (with a median of 4.4 hours and a standard
deviation of 3.8 hours). This is as expected, because the GUI states of the AUT (i.e., snapshots of VM)
were repeatedly restored and restarted in this phase. Nevertheless, this phase can be accelerated
several times by performing the exploration in parallel with multiple emulators.

To investigate whether Route is able to generate quality tests that verify the same features as
the original tests, we manually examined the behavior of the 219 generated tests and categorized
them into four groups.

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 3, Article 71. Pub. date: April 2023.

Route: Roads Not Taken in UI Testing 71:13

Fig. 5. Deleting a bill in Easy Bills Reminder with different controllers.

5.2.1 Different Controllers. In this category, the generated test performs the same task through
different GUI controllers. Examples include Figures 1(b) and 1(c). Instead of the pop-up menu in the
original test, these two tests reach the timetable management screen by the selection dialog and
menu options in Settings, respectively. Another example is illustrated in Figure 5. In the original
test, a bill is selected from the Overview screen and then deleted. Alternatively, the deletion can
be achieved through the Calendar View screen, as performed in the generated test.

5.2.2 Different Input Data. In this category, the generated test performs the same task through
the same controllers, but with different input data. For example, Figure 6 illustrates that the task
of creating a note is tested the same way in both the original and generated tests, i.e., using the
same controllers. However, the created notes are different in terms of their content (i.e., input data).
Figure 7 provides another example in this category. An original test depicted in Figure 7(a) views
the details of a photo, but in the generated test the photo is deleted and the details of another photo
are displayed (Figure 7(b)). In other words, the task of viewing photo details is performed the same
way, i.e., via the same menu option, in these two tests, but the photos (input data) are different.

5.2.3 Different Control Flow. The generated test performs the same task through the same con-
trollers and with identical input data. However, it adds additional steps to the original control flow.

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 3, Article 71. Pub. date: April 2023.

71:14 J.-W. Lin et al.

Fig. 6. Creating a note in Writeily Pro with different input data.

For instance, Figure 8(a) shows that the generated test switches from table view to list view be-
fore managing timetables. Similarly, Figure 8(b) illustrates that an additional circuit is added to the
original control flow by opening and closing a dialog.

5.2.4 Deviated. Here, the original assertions accidentally pass in the generated test, but the
desired functionality is not actually performed. For example, Figure 9(a) illustrates that an original
test for the page search feature in WordPress first performs a search with a keyword and then
checks if a specific post title is displayed. However, as shown in Figure 9(b), one of the generated
tests directly navigates to the post list screen and performs the existence check of the post title.
Such a test is not considered to be performing the same task as the original test.

The number of generated tests for each category is listed in Table 2. 92% (201/219) of the tests
generated by Route fall in the first three categories; these are high-quality tests that can be used
to augment an existing test suite. Moreover, for 96% (70/73) of the original tests, Route was able
generate at least one feature-based test. In the next research question, we further investigate why
the deviated tests were generated and how the effectiveness of Route can be improved.

5.3 RQ2: Analysis of Deviated Tests

In the deviated tests generated by Route, the oracles in the original tests were satisfied with-
out performing the desired functionality. We inspected all of the deviated tests to understand the

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 3, Article 71. Pub. date: April 2023.

Route: Roads Not Taken in UI Testing 71:15

Fig. 7. Viewing photo details in OwnCloud with different input data.

Table 2. Categories of Tests Generated by Route

Category #Generated Tests

Different Controllers 73 (33%)
Different Input Data 21 (10%)
Different Control Flow 107 (49%)
Deviated 18 (8%)

Total 219 (100%)

reasons behind their generation, as summarized in Table 3. As shown in Table 3, most of the devi-
ated tests resulted from imprecise oracles. A factor contributing to imprecise oracles is duplicate
widget ID. For example, in TestDelete for OwnCloud, an existence check of the TextView with ID
empty_list_view is performed after deleting a file. However, this widget ID is used in multiple Ac-
tivities (FileDisplayActivity and UploadListActivity), which resulted in a test that does not perform
deletion but with a passed oracle. Using a unique widget ID may prevent such a situation.

Another example of imprecise oracles is TestPageSearch for WordPress, shown in Figure 9. In this
test, an oracle verifies a post titled “sour candy” to confirm the search feature works. Nevertheless,
the oracle can be satisfied by directly navigating to the post list screen without a search. The same
case happened when Route tried to augment TestSearch for Shopping List and Writeily Pro. To

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 3, Article 71. Pub. date: April 2023.

71:16 J.-W. Lin et al.

Fig. 8. Timetable management in School Planner with different control flows.

Table 3. List of Deviated Tests Generated by Route

Test App
#Generated

Reason
Deviated Test

TestAddBill Easy Bills Reminder 3 Imprecise oracle
TestSearch Easy Bills Reminder 2 Imprecise oracle
TestDelete OwnCloud 2 Imprecise oracle
TestSearch Shopping List 2 Imprecise oracle
TestPageSearch WordPress 1 Imprecise oracle
TestDeleteNote Writeily Pro 2 Replaced action
TestMoveNote Writeily Pro 3 Imprecise oracle
TestSearch Writeily Pro 3 Imprecise oracle

Total 18

avoid this situation, test engineers may provide oracles that more precisely describe the expected
program state of the AUT. For example, in addition to specific text about search results such as
post title, the test can further check the screen title or Activity name to ensure that the correct
screen is displayed.

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 3, Article 71. Pub. date: April 2023.

Route: Roads Not Taken in UI Testing 71:17

Fig. 9. Example deviated test in WordPress.

Another reason for generation of deviated tests is replaced action. For instance, in TestDeleteNote

for Writeily Pro, the test first deletes a note and then checks if the TextView with ID empty_hint

(hint text for empty folder) appears. However, the existence check can also be satisfied by moving
the note elsewhere. To address this situation, we can allow the user of Route to annotate core
test steps (e.g., clicking the delete button) in the original tests. Such annotated events are then
guaranteed to be included in Test Generation to ensure the generated tests are feature-based.

Although deviated tests are not as useful as other types of generated tests in augmentation of
a test suite, they can be insightful for developers to improve the quality of assertions in original
tests, e.g., the fact that an assertion passes on multiple screens can potentially indicate a problem
with the original test.

5.4 RQ3: Fault Detection Effectiveness

To investigate whether the generated tests are advantageous in terms of fault detection effec-

tiveness (FDE), we created mutants for the apps under test with MutApk [17], an open-source mu-
tation testing tool for APK files. It supports 35 mutation operators designed for Android apps [30]
and performs the mutation on intermediate representations of the code. We created the mutants
with MutApk’s default strategy, in which both the mutation operators and locations of mutated
code were picked randomly. The number of mutants created for each app is shown in Table 4.

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 3, Article 71. Pub. date: April 2023.

71:18 J.-W. Lin et al.

Table 4. Number of Mutants Generated for the Subject Apps

App #Mutants |To | |Fo | |Tn=3| |Fn=3|

Astro 44 6 8 (18%) 24 14 (32%)
Easy Bills Reminder 32 7 6 (19%) 28 14 (44%)
Fuelio 41 7 13 (32%) 28 21 (51%)
Money Tracker 33 8 9 (27%) 32 15 (45%)
OwnCloud 38 8 6 (16%) 32 16 (42%)
School Planner 36 8 5 (14%) 32 11 (31%)
Shopping List 39 7 3 (8%) 28 9 (23%)
To Do List 38 7 6 (16%) 28 14 (37%)
WordPress 28 8 2 (7%) 32 8 (29%)
Writeily Pro 36 7 3 (8%) 28 16 (44%)

Total 365 73 61 (17%) 292 138 (38%)

To : original test suites. Tn=3: augmented test suites. Fo : mutants

killed by To . Fn=3: mutants killed by Tn=3.

Table 5. Types of Generated Mutants

Mutation Operator Description (from Reference [30])
#Mutant

Generated

Mutant
Killed
by To

Mutant
Killed

by Tn=3

ActivityNotDefined Delete an activity <android:name=“Activity”/>entry in the Manifest file 54 14 21
ClosingNullCursor Assign a cursor to null before it is closed 8 1 4
DifferentActivityIntentDefinition Replace the Activity.class argument in an Intent instantiation 8 1 7
FindViewByIdReturnsNull Assign a variable (returned by Activity.findViewById) to null 17 7 13
InvalidActivityPATH Randomly insert typos in the path of an activity defined in the Manifest file 17 7 14
InvalidFilePath Randomly mutate paths to files 2 1 2
InvalidIDFindView Replace the id argument in an Activitity.findViewById call 28 19 25
InvalidKeyIntentPutExtra Randomly generate a different key in an Intent.putExtra(key, value) 8 0 2
InvalidLabel Replace the attribute “android:label” in the Manifest file with a random string 16 0 0
InvalidSQLQuery Randomly mutate a SQL query 11 0 6
InvalidViewFocus Randomly focus a GUI component 23 0 0
LengthyGUICreation Insert a long delay (i.e., Thread.sleep(..)) in the GUI creation thread 11 1 5
LengthyGUIListener Insert a long delay (i.e., Thread.sleep(..)) in the GUI listener thread 5 0 1
MissingPermissionManifest Select and remove an <uses-permission />entry in the Manifest file 14 1 1
NullInputStream Assign an input stream (e.g., reader) to null before it is closed 11 1 1
NullIntent Replace an Intent instantiation with null 22 3 8
NullMethodCallArgument Randomly set null to a method call argument 18 2 8
NullValueIntentPutExtra Replace the value argument in an Intent.putExtra(key, value) call with new Parcelable 6 0 3
ViewComponentNotVisible Set visible attribute (from a View) to false 11 0 4
WrongMainActivity Randomly replace the main activity definition with a different activity 1 0 1
WrongStringResource Select a <string />entry in /res/values/strings.xml file and mutate the string value 74 3 12

Total 365 61 138

To : original test suites. Tn=3: augmented test suites.

The percentages of mutants killed by the original test suite and the augmented test suite are
shown in Table 1. Note that we generated three more tests for each original test, so the size of aug-
mented test sets is four (one original plus three generated). Table 1 shows that the fault detection
effectiveness of the augmented test sets improved on 73% (53/73) of the subject tests and by up to
39% (in the case of TestCreateNote for Writeily Pro). The mean, median, and standard deviation of
the FDE for the original test suites were 4.5%, 3%, and 4.9%, respectively. However, the mean, me-
dian, and standard deviation of the FDE for the augmented test suites were 13.3%, 12%, and 8.4%,
respectively. In total, the augmented tests were able to kill 38% (138/365) of the mutants, while
the original tests were only able to kill 17% (61/365) of them. Another perspective from each app
regarding the improved fault detection effectiveness is reported in Table 4. Both perspectives indi-
cate that the generated tests are not redundant. They covered additional parts of the AUT that the
original tests missed. In other words, Route is capable of augmenting test suites to detect latent
faults.

To further understand the types of faults that Route can help identify, we have listed the muta-
tion operators used in our experiment in Table 5. Out of 21 mutation types created with the help
of MutApk [17], the original test suites were able to cover 13 of them. However, the test suites

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 3, Article 71. Pub. date: April 2023.

Route: Roads Not Taken in UI Testing 71:19

Fig. 10. Mutant of the To Do List app killed by the generated test to create a new list.

Fig. 11. Mutant of the School Planner app killed by the generated test to add a subject.

augmented by Route outperformed the original suites in terms of both the types of mutants
covered and the number of mutants killed. The augmented suites exclusively covered six more
mutant types: InvalidKeyIntentPutExtra, InvalidSQLQuery, LengthyGUIListener, NullValueIntentPu-

tExtra, ViewComponentNotVisible, and WrongMainActivity. Furthermore, the number of mutants
killed by the augmented suites was significantly (over three times) more than the original suites for
the following mutant types: ClosingNullCursor, DifferentActivityIntentDefinition, LengthyGUICre-

ation, NullMethodCallArgument, and WrongStringResource.
Note that the behaviors manifested by the mutants were not necessarily app crashes. For in-

stance, Figure 10 illustrates an alternative way found by Route to create a list in the To Do List app,
which is through adding tasks in batch. Here, the mutant created with operator WrongStringRe-

source was exclusively killed by a test generated by Route. The mutation operator modified a menu
option that was clicked in one of the tests generated by Route, resulting in the test to fail when
executed on the mutant app. Figure 11 depicts another example of a non-crashing failure due to a

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 3, Article 71. Pub. date: April 2023.

71:20 J.-W. Lin et al.

Table 6. Growth of Test Suite Size, Number of Killed Mutants,

and Number of Types of Covered Mutation Operators

To Tn=1 Tn=2 Tn=3

Test Suite Size 73 146 219 292

#Mutant Killed 61 112 126 138

#Types Covered MutantOp 13 17 19 19

To : original test suite. Tn=x : augmented test suite by setting n = x .

Fig. 12. Normalized growth of test suite size, number of killed mutants, and number of types of covered

mutation operators. To : original test suite. Tn=x : augmented test suite by setting n = x .

mutant created with the DifferentActivityIntentDefinition operator. In this case, Route generated
a test to add a subject in the School Planner app through adding a Grade, which resulted in exclu-
sively killing the mutant. These examples demonstrate that Route was able to generate additional
tests that exposed non-crashing failures.

5.5 RQ4: Size of the Augmented Test Suites

As mentioned previously, the number of tests generated by Route can be configured by setting
the variable n. While expanding the test suites may improve their fault detection effectiveness

(FDE), it introduces additional costs in terms of test execution and maintenance. We analyzed
how the size of augmented test suites influence the FDE in our experiments and listed the results
in Table 6. The results indicate that when we grew the test suites linearly, the improvement was
sub-linear in terms of both the FDE and the types of covered mutation operators (CMOs). For
example, when we expanded the test suites by 2 fold (from 73 tests to 146 tests, by setting n = 1),
the FDE improved by a factor of 1.84 (112/61). Moreover, in the case that the size of test suites
was increased by 4 fold (by setting n = 3), the FDE improved by a factor of 2.26 (138/61). Finally,
increasing n from 2 to 3 did not improve the number of covered mutant types. We depict the
normalized growth of FDE and CMOs along with the suite size in Figure 12. From this experiment,
we conclude configuring Route with a value for n higher than 3 is likely to result in diminishing
returns. Developers may choose to set n in between 1 and 3, depending on their desire to balance
between test suite size and FDE.

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 3, Article 71. Pub. date: April 2023.

Route: Roads Not Taken in UI Testing 71:21

5.6 Threats to Validity

The major external threat to validity of our results is the generalization to other subject test cases
and apps. To mitigate this threat, we constructed our dataset by including different categories of
apps. Another external threat to validity is using mutants in place of real faults in the experiments.
Nevertheless, prior empirical study [26, 40] indicates a statistically significant correlation between
mutant detection and real fault detection. Moreover, we reported the mutation operators covered
by both the original and augmented test suites to provide more insights regarding what types of
real bugs Route may be good at revealing. The main internal threat to validity of the proposed
approach is the possible mistakes involved in our implementation and experiments. When Route
identifies GUI states, dynamic content such as timestamps or ads may introduce inaccuracy, i.e.,
the XML layout is slightly changed but should be considered as the same screen. We leveraged
virtualization to mitigate this issue and did not observe any instance of inaccuracies caused by dy-
namic content in our experimental results. That said, to prevent such potential inaccuracy caused
by dynamic content, one can adopt more sophisticated state abstraction models such as the ones
used in prior work [10, 21, 47] to determine which screens are equivalent. Moreover, we manually
inspected all of our results to increase our confidence in their correctness. The experimental data
is also publicly available for external inspection.

6 RELATED WORK

6.1 Test Augmentation

Test augmentation techniques [6, 11, 13, 18, 23, 27, 35, 41, 44, 46, 49, 50] create new tests from
existing ones to achieve a given engineering goal, such as improving coverage according to a crite-
rion. Pezze et al. [41] proposed to leverage existing unit tests to construct more complex tests that
focus on class interactions to reveal more faults. Yoo and Harman [49] introduced a search-based
technique that can generate additional test data from existing test data to improve the input space
coverage. Harder et al. [23] presented a test augmentation technique based on operational abstrac-

tion, which is a formal specification of program’s runtime behavior that can be dynamically mined.
A test suite can be augmented by adding test cases until the operational abstraction stops changing.
Tillmann and Schulte [46] proposed to use symbolic execution and constraint solving to help in-
crease code coverage by finding relevant variations of existing unit tests. Similarly, Bloem et al. [13]
used symbolic execution and model checking techniques to alter path conditions of existing tests
and generate new tests that enter uncovered features of the program. Starting from concrete unit
tests, Fraser and Zeller [18] presented an approach to generate parameterized unit tests contain-
ing symbolic pre- and post-conditions to achieve higher code coverage. To improve the mutation
score of an existing test suite, Baudry et al. [11] introduced a genetic algorithm to guide the search
for test cases that kill more mutants. Focusing on the context of regression testing, the work by
Santelices et al. [44] adopted dependency analysis and symbolic execution to synthesize new tests
with respect to the code changes not covered by existing tests. Another work considering test-suite
augmentation for code changes by Kim et al. [27] leverages different test generation algorithms
dynamically, since different algorithms have different strengths. Finally, Zhang and Elbaum [50]
developed a solution to amplify a test suite for finding bugs in exception handling code.

Route is different from the prior work because it is for GUI tests, while all of the above aug-
mentation techniques are for unit tests. Furthermore, Route aims to generate tests that verify the
same functionality as the original tests, which is not the focus of prior work. Finally, unlike Route,
none of the above-mentioned techniques target Android apps.

Our work is more related to Thor, proposed by Adamsen et al. [6]. Thor takes existing UI tests
for Android apps and injects neutral event sequences to see if the original assertions still pass.

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 3, Article 71. Pub. date: April 2023.

71:22 J.-W. Lin et al.

Neutral event sequences are a series of operations that are not expected to affect the outcome of
the injected test cases, such as rotating the phone or turning the screen off and on. Unlike Route,
Thor is not able to find alternative tests for verifying the same functionality, because its goal is
to simply expose the AUT to adverse conditions. In other words, Thor cannot generate the types
of tests discussed in Section 5.2 in which the same functionality of the AUT is examined with
different controllers, input data, or control flows.

Another work related to ours is Testilizer for web applications, proposed by Fard et al. [35].
Testilizer first infers a state flow graph from an existing web test, dynamically explores the graph,
and then generates new tests from the updated graph. The goal of Testilizer is to explore new states
and apply new and generic assertions learned from existing ones. In other words, the augmentation
by Testilizer is not feature-based. It is also not applicable to Android apps.

6.2 Automated Test Generation for Android Apps

App crawling based on GUI hierarchy information. Many automated test generation tech-
niques [5, 7, 8, 14, 15, 22, 32–34, 36, 38, 45, 48] leverage GUI hierarchy information of the AUT and
apply different exploration strategies to create and execute GUI events to improve code coverage.
For example, given an Android app, CrashScope [38] explores the app by dispatching randomly
generated events, which can be system events or GUI events extracted from the GUI hierarchy.
While we also leverage GUI hierarchy information for test generation, what distinguishes Route
from prior work, including CrashScope, is that our exploration strategy is directed by existing test
suites to achieve feature-based augmentation. Note that Route is not another record-and-replay
tool, such as Reference [24], because our goal is not to faithfully replay existing tests, but to diverge
from them in a manner that allows us to meaningfully examine the same features.

Systematic testing. To perform systematic testing of Android apps, prior work [8, 9, 19, 25, 37]
used techniques such as targeted event sequence generation and symbolic execution. Tanzirul and
Neamtiu proposed A3E [9], an app crawler that aims to increase app coverage (Activity and method
coverage) by prioritizing events that lead to undiscovered states in the app. Mirzaei et al. [37] and
Anand et al. [8] introduced concolic testing in Android to automatically explore obscured parts of
an app by finding proper events and contextual settings. Jensen et al. [25] introduced a two-phase
technique (generating event-handler summaries and concolic testing) that produce backward event
sequences from a target line of code to the entry point of the app. Xiang et al. [19] tried to address
the environmental challenges of symbolic execution in the presence of various Android SDKs and
libraries by deducing a representation of libraries on-the-fly.

Similarly, Route tries to find an event sequence to reach a specific part of the app. However,
unlike the above tools, our goal is not to increase the code coverage by reaching unexplored parts
of an app. In contrast, we try to find a new path covering the already visited states in existing test
cases through different sequence of events. In addition, previous tools primarily focus on achieving
certain objectives at the source-code level (i.e., to reach specific lines of code), while Route focuses
on covering the same behavior and feature as the original test (i.e., to find a path that covers the
terminal and oracle GUI states). Finally, it is worth noting that symbolic execution can be used
as a complementary approach together with Route to find proper input values to increase the
exploration performance.

7 CONCLUSION

There are often several ways of invoking the core features of an app. Due to the manual effort
of writing tests, developers tend to consider only the typical way of invoking a feature when
creating the tests. However, the alternative ways of invoking a feature are as likely to be faulty,
which would go undetected without proper tests. This article presented Route, an automated

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 3, Article 71. Pub. date: April 2023.

Route: Roads Not Taken in UI Testing 71:23

tool for feature-based UI test augmentation for Android apps. Route creates high-quality tests,
consisting of both inputs and assertions, to verify the features tested by existing tests in alternative
ways. Route relies on several novel heuristics to guide the search for new tests and leverages
virtualization technology to save the visited UI states, such that the states can be fully restored
later for exploration.

Experimental results using real-world subjects have demonstrated the effectiveness of Route,
as it successfully generated alternative tests for 96% of the existing test cases in our experiments.
Moreover, the fault detection effectiveness of augmented test suites in our experiments showed
substantial improvements of up to 39% over the original test suites.

In our future work, we aim to investigate the applicability of techniques described here in other
computing domains (e.g., web applications) and other testing paradigms (e.g., unit tests). Moreover,
we plan to conduct sensitivity analysis to discuss the tradeoff between the performance and fault
detection ability of Route with larger lookahead steps and the support of system events in the
app exploration phase. Finally, we plan to develop an adapter that translates the JSON-formatted
outputs to executable tests in a programming language such as Java and conduct user studies with
practitioners to validate the utility of tests generated using Route in practice.

ACKNOWLEDGMENTS

We would like to thank the anonymous reviewers of this article for their detailed feedback, which
helped us improve the work.

REFERENCES

[1] Chih-Wei Huang. 2022. Android-x86 - Porting Android to x86. Retrieved from https://www.android-x86.org/.

[2] OpenJS Foundation. 2022. Appium. Retrieved from https://github.com/appium/appium.

[3] Jun-Wei Lin, Navid Salehnamadi, and Sam Malek. 2022. Route Project Website. Retrieved from https://sites.google.com/

view/route.

[4] Andrea Dal Cin. 2022. School Planner. Retrieved from https://play.google.com/store/apps/details?id=daldev.android.

gradehelper.

[5] Google LLC. 2022. UI Application Exerciser Monkey. Retrieved from https://developer.android.com/studio/test/monkey.

[6] Christoffer Quist Adamsen, Gianluca Mezzetti, and Anders Møller. 2015. Systematic execution of Android test suites

in adverse conditions. In Proceedings of the International Symposium on Software Testing and Analysis (ISSTA’15). As-

sociation for Computing Machinery, New York, NY, 83–93. DOI:https://doi.org/10.1145/2771783.2771786

[7] D. Amalfitano, A. R. Fasolino, P. Tramontana, B. D. Ta, and A. M. Memon. 2015. MobiGUITAR: Automated model-based

testing of mobile apps. IEEE Softw. 32, 5 (Sept. 2015), 53–59. DOI:https://doi.org/10.1109/MS.2014.55

[8] Saswat Anand, Mayur Naik, Mary Jean Harrold, and Hongseok Yang. 2012. Automated concolic testing of smartphone

apps. In Proceedings of the ACM SIGSOFT 20th International Symposium on the Foundations of Software Engineering

(FSE’12). ACM, New York, NY. DOI:https://doi.org/10.1145/2393596.2393666

[9] Tanzirul Azim and Iulian Neamtiu. 2013. Targeted and depth-first exploration for systematic testing of Android apps.

In Proceedings of the ACM SIGPLAN International Conference on Object Oriented Programming Systems Languages &

Applications. 641–660.

[10] Young-Min Baek and Doo-Hwan Bae. 2016. Automated model-based Android GUI testing using multi-level GUI

comparison criteria. In Proceedings of the 31st IEEE/ACM International Conference on Automated Software Engineer-

ing (ASE’16). Association for Computing Machinery, New York, NY, 238–249. DOI:https://doi.org/10.1145/2970276.

2970313

[11] Benoit Baudry, Franck Fleurey, Jean-Marc Jézéquel, and Yves Le Traon. 2005. From genetic to bacteriological algo-

rithms for mutation-based testing. Softw. Test. Verif. Reliab. 15, 2 (2005), 73–96.

[12] F. Behrang and A. Orso. 2019. Test migration between mobile apps with similar functionality. In Proceedings of the

34th IEEE/ACM International Conference on Automated Software Engineering (ASE’19). 54–65.

[13] Roderick Bloem, Robert Koenighofer, Franz Röck, and Michael Tautschnig. 2014. Automating test-suite augmentation.

In Proceedings of the 14th International Conference on Quality Software. 67–72. DOI:https://doi.org/10.1109/QSIC.2014.

40

[14] Wontae Choi, George Necula, and Koushik Sen. 2013. Guided GUI testing of Android apps with minimal restart and

approximate learning. In Proceedings of the ACM SIGPLAN International Conference on Object Oriented Programming

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 3, Article 71. Pub. date: April 2023.

https://www.android-x86.org/
https://github.com/appium/appium
https://sites.google.com/view/route
https://play.google.com/store/apps/details?id=daldev.android.gradehelper
https://developer.android.com/studio/test/monkey
https://doi.org/10.1145/2771783.2771786
https://doi.org/10.1109/MS.2014.55
https://doi.org/10.1145/2393596.2393666
https://doi.org/10.1145/2970276.2970313
https://doi.org/10.1109/QSIC.2014.40

71:24 J.-W. Lin et al.

Systems Languages & Applications (OOPSLA’13). ACM, New York, NY, 623–640. DOI:https://doi.org/10.1145/2509136.

2509552

[15] Zhen Dong, Marcel Böhme, Lucia Cojocaru, and Abhik Roychoudhury. 2020. Time-travel testing of Android apps. In

Proceedings of the ACM/IEEE 42nd International Conference on Software Engineering (ICSE’20). Association for Com-

puting Machinery, New York, NY, 481–492. DOI:https://doi.org/10.1145/3377811.3380402

[16] Paul M. Duvall, Steve Matyas, and Andrew Glover. 2007. Continuous Integration: Improving Software Quality and

Reducing Risk. Pearson Education.

[17] Camilo Escobar-Velásquez, Michael Osorio-Riaño, and Mario Linares-Vásquez. 2019. MutAPK: Source-codeless mutant

generation for Android apps. In Proceedings of the 34th IEEE/ACM International Conference on Automated Software

Engineering (ASE’19). 1090–1093. DOI:https://doi.org/10.1109/ASE.2019.00109

[18] Gordon Fraser and Andreas Zeller. 2011. Generating parameterized unit tests. In Proceedings of the International Sym-

posium on Software Testing and Analysis (ISSTA’11). Association for Computing Machinery, New York, NY, 364–374.

DOI:https://doi.org/10.1145/2001420.2001464

[19] Xiang Gao, Shin Hwei Tan, Zhen Dong, and Abhik Roychoudhury. 2018. Android testing via synthetic symbolic

execution. In Proceedings of the 33rd IEEE/ACM International Conference on Automated Software Engineering (ASE’18).

IEEE, 419–429.

[20] Google. 2021. Create and Manage Virtual Devices. Retrieved from https://developer.android.com/studio/run/managing-

avds.

[21] Tianxiao Gu, Chengnian Sun, Xiaoxing Ma, Chun Cao, Chang Xu, Yuan Yao, Qirun Zhang, Jian Lu, and Zhendong

Su. 2019. Practical GUI testing of Android applications via model abstraction and refinement. In Proceedings of the

IEEE/ACM 41st International Conference on Software Engineering (ICSE’19). 269–280. DOI:https://doi.org/10.1109/ICSE.

2019.00042

[22] Shuai Hao, Bin Liu, Suman Nath, William G. J. Halfond, and Ramesh Govindan. 2014. PUMA: Programmable UI-

automation for large-scale dynamic analysis of mobile apps. In Proceedings of the 12th Annual International Conference

on Mobile Systems, Applications, and Services (MobiSys’14). ACM, New York, NY, 204–217. DOI:https://doi.org/10.1145/

2594368.2594390

[23] Michael Harder, Jeff Mellen, and Michael D. Ernst. 2003. Improving test suites via operational abstraction. In Proceed-

ings of the 25th International Conference on Software Engineering (ICSE’03). IEEE Computer Society, 60–71.

[24] Yongjian Hu, Tanzirul Azim, and Iulian Neamtiu. 2015. Versatile yet lightweight record-and-replay for Android. In

Proceedings of the ACM SIGPLAN International Conference on Object-Oriented Programming, Systems, Languages, and

Applications. 349–366.

[25] Casper S. Jensen, Mukul R. Prasad, and Anders Møller. 2013. Automated testing with targeted event sequence gener-

ation. In Proceedings of the International Symposium on Software Testing and Analysis. 67–77.

[26] René Just, Darioush Jalali, Laura Inozemtseva, Michael D. Ernst, Reid Holmes, and Gordon Fraser. 2014. Are mutants

a valid substitute for real faults in software testing? In Proceedings of the 22nd ACM SIGSOFT International Sympo-

sium on Foundations of Software Engineering (FSE’14). Association for Computing Machinery, New York, NY, 654–665.

DOI:https://doi.org/10.1145/2635868.2635929

[27] Yunho Kim, Zhihong Zu, Moonzoo Kim, Myra B. Cohen, and Gregg Rothermel. 2014. Hybrid directed test suite aug-

mentation: An interleaving framework. In Proceedings of the IEEE 7th International Conference on Software Testing,

Verification and Validation. 263–272. DOI:https://doi.org/10.1109/ICST.2014.39

[28] Vladimir I. Levenshtein. 1966. Binary codes capable of correcting deletions, insertions, and reversals. In Soviet Physics

Doklady, Vol. 10. 707–710.

[29] J. Lin, N. Salehnamadi, and S. Malek. 2020. Test automation in open-source Android apps: A large-scale empirical

study. In Proceedings of the 35th IEEE/ACM International Conference on Automated Software Engineering (ASE’20).

[30] Mario Linares-Vásquez, Gabriele Bavota, Michele Tufano, Kevin Moran, Massimiliano Di Penta, Christopher Vendome,

Carlos Bernal-Cárdenas, and Denys Poshyvanyk. 2017. Enabling mutation testing for Android apps. In Proceedings of

the 11th Joint Meeting on Foundations of Software Engineering (ESEC/FSE’17). Association for Computing Machinery,

New York, NY, 233–244. DOI:https://doi.org/10.1145/3106237.3106275

[31] M. Linares-Vásquez, C. Bernal-Cardenas, K. Moran, and D. Poshyvanyk. 2017. How do developers test Android applica-

tions? In Proceedings of the IEEE International Conference on Software Maintenance and Evolution (ICSME’17). 613–622.

DOI:https://doi.org/10.1109/ICSME.2017.47

[32] Aravind Machiry, Rohan Tahiliani, and Mayur Naik. 2013. Dynodroid: An input generation system for Android apps.

In Proceedings of the 9th Joint Meeting on Foundations of Software Engineering (ESEC/FSE’13). ACM, New York, NY,

224–234. DOI:https://doi.org/10.1145/2491411.2491450

[33] Riyadh Mahmood, Nariman Mirzaei, and Sam Malek. 2014. EvoDroid: Segmented evolutionary testing of Android apps.

In Proceedings of the 22nd ACM SIGSOFT International Symposium on Foundations of Software Engineering (FSE’14).

ACM, New York, NY, 599–609. DOI:https://doi.org/10.1145/2635868.2635896

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 3, Article 71. Pub. date: April 2023.

https://doi.org/10.1145/2509136.2509552
https://doi.org/10.1145/3377811.3380402
https://doi.org/10.1109/ASE.2019.00109
https://doi.org/10.1145/2001420.2001464
https://developer.android.com/studio/run/managing-avds
https://doi.org/10.1109/ICSE.2019.00042
https://doi.org/10.1145/2594368.2594390
https://doi.org/10.1145/2635868.2635929
https://doi.org/10.1109/ICST.2014.39
https://doi.org/10.1145/3106237.3106275
https://doi.org/10.1109/ICSME.2017.47
https://doi.org/10.1145/2491411.2491450
https://doi.org/10.1145/2635868.2635896

Route: Roads Not Taken in UI Testing 71:25

[34] Ke Mao, Mark Harman, and Yue Jia. 2016. Sapienz: Multi-objective automated testing for Android applications. In

Proceedings of the 25th International Symposium on Software Testing and Analysis (ISSTA’16). ACM, New York, NY,

94–105. DOI:https://doi.org/10.1145/2931037.2931054

[35] Amin Milani Fard, Mehdi Mirzaaghaei, and Ali Mesbah. 2014. Leveraging existing tests in automated test generation

for web applications. In Proceedings of the 29th ACM/IEEE International Conference on Automated Software Engineering

(ASE’14). ACM, 67–78. DOI:https://doi.org/10.1145/2642937.2642991

[36] N. Mirzaei, H. Bagheri, R. Mahmood, and S. Malek. 2015. SIG-Droid: Automated system input generation for Android

applications. In Proceedings of the IEEE 26th International Symposium on Software Reliability Engineering (ISSRE’15).

461–471. DOI:https://doi.org/10.1109/ISSRE.2015.7381839

[37] Nariman Mirzaei, Sam Malek, Corina S. Păsăreanu, Naeem Esfahani, and Riyadh Mahmood. 2012. Testing Android

apps through symbolic execution. ACM SIGSOFT Softw. Eng. Notes 37, 6 (2012), 1–5.

[38] Kevin Moran, Mario Linares-Vásquez, Carlos Bernal-Cárdenas, Christopher Vendome, and Denys Poshyvanyk. 2017.

CrashScope: A practical tool for automated testing of Android applications. In Proceedings of the IEEE/ACM 39th

International Conference on Software Engineering Companion (ICSE-C’17). IEEE, 15–18.

[39] Oracle. 2021. Oracle VM VirtualBox. Retrieved from https://www.virtualbox.org/.

[40] Mike Papadakis, Donghwan Shin, Shin Yoo, and Doo-Hwan Bae. 2018. Are mutation scores correlated with real

fault detection? A large scale empirical study on the relationship between mutants and real faults. In Proceedings of

the IEEE/ACM 40th International Conference on Software Engineering (ICSE’18). 537–548. DOI:https://doi.org/10.1145/

3180155.3180183

[41] M. Pezze, K. Rubinov, and J. Wuttke. 2013. Generating effective integration test cases from unit ones. In Proceedings of

the IEEE 6th International Conference on Software Testing, Verification and Validation. IEEE Computer Society, 11–20.

DOI:https://doi.org/10.1109/ICST.2013.37

[42] Xue Qin, Hao Zhong, and Xiaoyin Wang. 2019. TestMig: Migrating GUI test cases from iOS to Android. In Proceedings

of the 28th ACM SIGSOFT International Symposium on Software Testing and Analysis (ISSTA’19). ACM, New York, NY,

284–295. DOI:https://doi.org/10.1145/3293882.3330575

[43] Navid Salehnamadi, Abdulaziz Alshayban, Jun-Wei Lin, Iftekhar Ahmed, Stacy Branham, and Sam Malek. 2021. Latte:

Use-case and assistive-service driven automated accessibility testing framework for Android. In Proceedings of the

CHI Conference on Human Factors in Computing Systems. 1–11.

[44] Raul Santelices, Pavan Kumar Chittimalli, Taweesup Apiwattanapong, Alessandro Orso, and Mary Jean Harrold. 2008.

Test-suite augmentation for evolving software. In Proceedings of the 23rd IEEE/ACM International Conference on Auto-

mated Software Engineering. 218–227. DOI:https://doi.org/10.1109/ASE.2008.32

[45] Ting Su, Guozhu Meng, Yuting Chen, Ke Wu, Weiming Yang, Yao Yao, Geguang Pu, Yang Liu, and Zhendong Su. 2017.

Guided, stochastic model-based GUI testing of Android apps. In Proceedings of the 11th Joint Meeting on Foundations

of Software Engineering (ESEC/FSE’17). ACM, New York, NY, 245–256. DOI:https://doi.org/10.1145/3106237.3106298

[46] N. Tillmann and W. Schulte. 2006. Unit tests reloaded: Parameterized unit testing with symbolic execution. IEEE Softw.

23, 4 (2006), 38–47. DOI:https://doi.org/10.1109/MS.2006.117

[47] Wenyu Wang, Wei Yang, Tianyin Xu, and Tao Xie. 2021. Vet: Identifying and avoiding UI exploration tarpits. In

Proceedings of the 29th ACM Joint Meeting on European Software Engineering Conference and Symposium on the

Foundations of Software Engineering (ESEC/FSE’21). Association for Computing Machinery, New York, NY, 83–94.

DOI:https://doi.org/10.1145/3468264.3468554

[48] Wei Yang, Mukul R. Prasad, and Tao Xie. 2013. A grey-box approach for automated GUI-model generation of mobile

applications. In Fundamental Approaches to Software Engineering. Springer Berlin, 250–265.

[49] S. Yoo and M. Harman. 2012. Test data regeneration: Generating new test data from existing test data. Softw. Test. Verif.

Reliab. 22, 3 (May 2012), 171–201. DOI:https://doi.org/10.1002/stvr.435

[50] Pingyu Zhang and Sebastian Elbaum. 2012. Amplifying tests to validate exception handling code. In Proceedings of

the 34th International Conference on Software Engineering (ICSE’12). 595–605. DOI:https://doi.org/10.1109/ICSE.2012.

6227157

Received 4 December 2021; revised 31 July 2022; accepted 12 October 2022

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 3, Article 71. Pub. date: April 2023.

https://doi.org/10.1145/2931037.2931054
https://doi.org/10.1145/2642937.2642991
https://doi.org/10.1109/ISSRE.2015.7381839
https://www.virtualbox.org/
https://doi.org/10.1145/3180155.3180183
https://doi.org/10.1109/ICST.2013.37
https://doi.org/10.1145/3293882.3330575
https://doi.org/10.1109/ASE.2008.32
https://doi.org/10.1145/3106237.3106298
https://doi.org/10.1109/MS.2006.117
https://doi.org/10.1145/3468264.3468554
https://doi.org/10.1002/stvr.435
https://doi.org/10.1109/ICSE.2012.6227157

