Using Semantic Similarity in Crawling-based Web Application Testing

Jun-Wei Lin Farn Wang Paul Chu (UC-Irvine) (National Taiwan Univ.) (QNAP, Inc)

Crawling-based Web App Testing

- the web app under test as a black-box
- interacting with the app interface
 DOMs in browsers
- Usage
 - Model-based testing
 - Invariant detection
 - Cross-browser compatibility testing

Crawling-based Web App Testing

Challenges:

- Input value selection
 - topic identification
- GUI state comparison
- Present approaches:
- Manual labor intensive
- application-specific
- string-matching based
 - Written by human

Present approaches (1/4)

Input Value Selection (Topic Identification)

input.id("last_name").setValue("James");

In Browser:

Last Name

The DOM Element:

Last Name

<input type="text" name="last_name"</td>

Present approaches (2/4)

String-matching Based Rules

- 1. Map the feature string to a topic
- 2. Select a value from the dataset for the topic

input.id("last name").setValue("James");

Present approaches (3/4)

String-matching Based Rules

```
input.id("last_name").setValue("James");
```

Drawbacks:

- "last name", "family name", "surname", or even randomly generated id?
- id mapped to multiple topics?
- e.g., "tel" \rightarrow telephone "In" \rightarrow last_name "aycreateln" \rightarrow ?

Present approaches (4/4)

GUI State Abstraction

- Distinguish newly discovered GUI states from explored ones
- Abstract the states by DOM content filtering
- Application-specific

Observations

- Human interacts with web applications through the text in natural language
 - but not the DOM structures or attributes
- In markup language (e.g. HTML and XML), the reserved words for DOM attributes are limited

 id, *name*, *type*...
- While the words used in text and attributes for input fields of the same topic may be different among web applications, they are usually semantically similar
 - "last name", "surname", "family name"

Our Proposal

Inference with Semantic Similarity

Inference with Semantic Similarity Running Example

Training data

The input field to be inferred

Family Name

Inference with Semantic Similarity Feature Extraction

maxlength="35">

Inference with Semantic Similarity Vector Transformation

['last', 'name', 'text', 'last', 'name', 'last', 'name', '35']								
['email', 'text', 'email', 'email', '35']								
['password', 'password' $d_1 d_2 d_3 d_3$						d_4		
['verify', 'password'	1	text	/ 1	1	0	0 \		
'check', '25']		last	3	0	0	0		
		name	3	0	0	0		
• • • • •	X =	35	1	1	0	0		
Bag-of-Words:		email	0	3	0	0		
		25	0	0	1	1		
		password	0	0	4	4		
		verify	0	0	0	1		
		check	0	0	0	2 J		

Inference with Semantic Similarity Vector Transformation

Tf-idf: f_{"password",d3}log₂(N/n_{"password"})=4 (Term frequency with inverse document frequency)

		d_1	d_2	d_3	d_4		d_1	d_2	d_3	d_4
	text	(1	1	0	0 \	text	(0.1162	0.1622	0	0)
	last	3	0	0	0	last	0.6975	0	0	0
	name	3	0	0	0	name	0.6975	0	0	0
	35	1	1	0	0	35	0.1162	0.1622	0	0
X =	email	0	3	0	0	email	0	0.9733	0	0
	25	0	0	1	1	25	0	0	0.2425	0.1644
	password	0	0	4	4	passwoda	0	0	0.9701	0.6576
	verify	0	0	0	1	verify	0	0	0	0.3288
	check	0 /	0	0	2 J	check	0	0	0	0.6576

Inference with Semantic Similarity Vector Transformation

Latent Semantic Indexing

- Singular Value Decomposition: $X = U\Sigma V^T$
 - -U: latent concepts in the documents
 - Σ : importance of each latent concept
 - $-V^T$: Coordinates of the documents in the latent vector space
- In our experiment, we use genism library.
- Also see <u>http://www.bluebit.gr/matrix-</u> calculator/

Inference with Semantic Similarity Similarity Calculation

- With the U, Σ and V^T , we can transform a document q into the latent vector space in which its coordinates $q' = \Sigma^{-1} U^T q$
- Similarity of q to the training documents = Cosine similarity of q' to vectors in V^T


```
<span>Family Name</span><input type="text" id="textfield-1029-inputEl"<br/>name="102300000003017">
```

Experiment 1 Input Topic Identification

- 100 real-world forms of graduate program registration
- Totally 985 input fields

Торіс	#		Торіс	#
password	188		validation_action	1
email	151		digit-16	1
last_name	105]	ssn-middle	1
first_name	105		secure_q	1
username	48		job_title	1
middle_name	46		ssn-swiss-postfix-2	1
phone	46		date-yyyy-mm-dd	1
date-mm/dd/yyyy	43]	unknown_hidden	1
zipcode	41		ssn-postfix	1
date-mm/yyyy	28]	user_status	1
city	25		visa_number	1
street-line-2	13		ssn-prefix	1
street-line-1	13		Total	985

Experiment 1

Input Topic Identification

Steps

- Randomly choose x% of the forms as training data (corpus)
 - x = 10, 20, 30, 40, 50, 60, 70
- Generate rules (i.e. mappings from feature strings to topics) using the training forms
- Infer the rest forms with:
 - The proposed approach (NL)
 - Rule-based approach (RB)
 - RB+NL-n (no-match)
 - RB+NL-m (multiple-topic)
 - RB+NL-b (both)
- Repeat 1000 times

J.-W. Lin, F. Wang, P. Chu (ICST 2017)

Experiment 1 Input Topic Identification

Result

TABLE V. AVERAGE ACCURACIES ACHIEVED BY DIFFERENT METHODS WHEN THE CONSIDERED PERCENTAGES ARE USED AS TRAINING DATA.

0/	Accuracy (%)							
70 training	NL	RB	RB+	RB+	RB+			
			NL-n	NL-m	NL-b			
10%	70.42	75.60	75.70	82.13	82.23			
20%	72.48	75.81	75.85	85.00	85.04			
30%	72.66	75.04	75.05	86.18	86.19			
40%	72.67	74.14	74.14	86.86	86.86			
50%	73.26	73.50	73.50	87.47	87.47			
60%	73.29	72.64	72.64	87.54	87.54			
70%	74.05	72.44	72.44	88.39	88.39			

Experiment 2 GUI State Abstraction

- A real-world web app and its test cases
- The states are manually examined and clustered by an engineer in the company

Test Suite	Description	# Test Cases	# GUI States	# Clusters
install_wiz	Installation wizard	6	60	22
rule	NAS Rule management	3	237	80
server_add	NAS addition and removal	6	200	88
server_app	App management and config backup	7	207	42
settings	Account and server settings management	8	451	84

Experiment 2 GUI State Abstraction

- **Abstraction Methods**
- WS (White Space)
 - Replace all line breaks and tabs with white space
 - Collapse white space
- TagAttrWD
 - Keep only tag names and important attributes
 - Remove timestamps
 - WS abstraction
- NL
 - Use enclosed text in visible DOM elements
 - A similarity threshold to determine equivalence

Experiment 2 GUI State Abstraction

Result

TABLE IX. F-MEASURE OF THE CLUSTERING RESULTS

Test Suite	F-measure						
Test Suite	WS	TagAttrWD	NL				
install_wiz	0.7817	0.8194	0.7826				
rule	0.3241	0.3599	0.4443				
server_add	0.4281	0.4751	0.6776				
server_app	0.1532	0.1809	0.3559				
settings	0.1180	0.4512	0.4156				

Contribution

- Natural language techniques for automating crawling-based web application testing
 - Input topic identification and value selection
 - State equivalence checking
- Experiments

Future Work

- The impact overall crawling efficacy with more data and other topic model alternatives such as LDA
- Information retrieval from, e.g., comments, of DOMs
- Mobile apps ?